A Simple GHz Resonator for Superconducting Materials Characterization
This work examines the design and operation of a longitudinal resonant cavity, paired with monopole send and reciprocal patch receive antennae, that couples radio-frequency energy to a superconducting thin film carrying high current densities (~10 5 A/cm 2 ). The dielectric substrate supporting the...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on applied superconductivity 2015-06, Vol.25 (3), p.1-4 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4 |
---|---|
container_issue | 3 |
container_start_page | 1 |
container_title | IEEE transactions on applied superconductivity |
container_volume | 25 |
creator | Jensen, Shauna M. Bass, Robert B. Lichtenberger, Arthur W. Datesman, Aaron M. |
description | This work examines the design and operation of a longitudinal resonant cavity, paired with monopole send and reciprocal patch receive antennae, that couples radio-frequency energy to a superconducting thin film carrying high current densities (~10 5 A/cm 2 ). The dielectric substrate supporting the film penetrates the waveguide, which operates in an evanescent mode below the design cutoff frequency of 18 GHz. Oscillatory vortex motion in the thin film is found to produce a small (~0.1 mV) dc voltage. When the niobium film is patterned to form an aperture that permits resonant conditions within the waveguide volume, the measured voltage increases by an order of magnitude. The increase is explained in the framework of the Larkin-Ovchinnikov model for quasiparticle behavior inside a moving normal vortex core. Operated near the superconducting transition, this device is useful for materials characterization, including the possibility to extract parameters including the pinning force. The authors suggest that the device could be used to characterize the pinning potential or to explore quasiparticle dynamics in superconducting thin films. |
doi_str_mv | 10.1109/TASC.2014.2379285 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_6981907</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6981907</ieee_id><sourcerecordid>10_1109_TASC_2014_2379285</sourcerecordid><originalsourceid>FETCH-LOGICAL-c265t-535f84c93cb45c5a4c3bd724368728196636377e8c081fd4f7c879e37e7d1b883</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMoOKc_QLzJH2jNd9LLUuYmTAQ7r0OaphrZ2pJ0F-7Xm7LhxeF88L7vgQeAR4xyjFHxvCvrKicIs5xQWRDFr8ACc64ywjG_TjPiOFOE0FtwF-MPSkrF-AKsSlj7w7h3cL05wQ8Xh95MQ4Bdqvo4umCHvj3ayfdf8M1MLnizj7D6NsHYeTuZyQ_9Pbjp0t09XPoSfL6sdtUm276vX6tym1ki-JRxyjvFbEFtw7jlhlnatJIwKpQkChdCUEGldMoihbuWddIqWTgqnWxxoxRdAnzOtWGIMbhOj8EfTPjVGOmZg5456JmDvnBInqezxzvn_vWiSP-QpH8UFFkV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Simple GHz Resonator for Superconducting Materials Characterization</title><source>IEEE Electronic Library (IEL)</source><creator>Jensen, Shauna M. ; Bass, Robert B. ; Lichtenberger, Arthur W. ; Datesman, Aaron M.</creator><creatorcontrib>Jensen, Shauna M. ; Bass, Robert B. ; Lichtenberger, Arthur W. ; Datesman, Aaron M.</creatorcontrib><description>This work examines the design and operation of a longitudinal resonant cavity, paired with monopole send and reciprocal patch receive antennae, that couples radio-frequency energy to a superconducting thin film carrying high current densities (~10 5 A/cm 2 ). The dielectric substrate supporting the film penetrates the waveguide, which operates in an evanescent mode below the design cutoff frequency of 18 GHz. Oscillatory vortex motion in the thin film is found to produce a small (~0.1 mV) dc voltage. When the niobium film is patterned to form an aperture that permits resonant conditions within the waveguide volume, the measured voltage increases by an order of magnitude. The increase is explained in the framework of the Larkin-Ovchinnikov model for quasiparticle behavior inside a moving normal vortex core. Operated near the superconducting transition, this device is useful for materials characterization, including the possibility to extract parameters including the pinning force. The authors suggest that the device could be used to characterize the pinning potential or to explore quasiparticle dynamics in superconducting thin films.</description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/TASC.2014.2379285</identifier><identifier>CODEN: ITASE9</identifier><language>eng</language><publisher>IEEE</publisher><subject>Cavity resonators ; cryotron ; Current density ; High-temperature superconductors ; Niobium ; Radio frequency ; Resonant frequency ; resonator ; Superconducting microwave devices ; vortex</subject><ispartof>IEEE transactions on applied superconductivity, 2015-06, Vol.25 (3), p.1-4</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c265t-535f84c93cb45c5a4c3bd724368728196636377e8c081fd4f7c879e37e7d1b883</citedby><cites>FETCH-LOGICAL-c265t-535f84c93cb45c5a4c3bd724368728196636377e8c081fd4f7c879e37e7d1b883</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6981907$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6981907$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jensen, Shauna M.</creatorcontrib><creatorcontrib>Bass, Robert B.</creatorcontrib><creatorcontrib>Lichtenberger, Arthur W.</creatorcontrib><creatorcontrib>Datesman, Aaron M.</creatorcontrib><title>A Simple GHz Resonator for Superconducting Materials Characterization</title><title>IEEE transactions on applied superconductivity</title><addtitle>TASC</addtitle><description>This work examines the design and operation of a longitudinal resonant cavity, paired with monopole send and reciprocal patch receive antennae, that couples radio-frequency energy to a superconducting thin film carrying high current densities (~10 5 A/cm 2 ). The dielectric substrate supporting the film penetrates the waveguide, which operates in an evanescent mode below the design cutoff frequency of 18 GHz. Oscillatory vortex motion in the thin film is found to produce a small (~0.1 mV) dc voltage. When the niobium film is patterned to form an aperture that permits resonant conditions within the waveguide volume, the measured voltage increases by an order of magnitude. The increase is explained in the framework of the Larkin-Ovchinnikov model for quasiparticle behavior inside a moving normal vortex core. Operated near the superconducting transition, this device is useful for materials characterization, including the possibility to extract parameters including the pinning force. The authors suggest that the device could be used to characterize the pinning potential or to explore quasiparticle dynamics in superconducting thin films.</description><subject>Cavity resonators</subject><subject>cryotron</subject><subject>Current density</subject><subject>High-temperature superconductors</subject><subject>Niobium</subject><subject>Radio frequency</subject><subject>Resonant frequency</subject><subject>resonator</subject><subject>Superconducting microwave devices</subject><subject>vortex</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF1LwzAUhoMoOKc_QLzJH2jNd9LLUuYmTAQ7r0OaphrZ2pJ0F-7Xm7LhxeF88L7vgQeAR4xyjFHxvCvrKicIs5xQWRDFr8ACc64ywjG_TjPiOFOE0FtwF-MPSkrF-AKsSlj7w7h3cL05wQ8Xh95MQ4Bdqvo4umCHvj3ayfdf8M1MLnizj7D6NsHYeTuZyQ_9Pbjp0t09XPoSfL6sdtUm276vX6tym1ki-JRxyjvFbEFtw7jlhlnatJIwKpQkChdCUEGldMoihbuWddIqWTgqnWxxoxRdAnzOtWGIMbhOj8EfTPjVGOmZg5456JmDvnBInqezxzvn_vWiSP-QpH8UFFkV</recordid><startdate>201506</startdate><enddate>201506</enddate><creator>Jensen, Shauna M.</creator><creator>Bass, Robert B.</creator><creator>Lichtenberger, Arthur W.</creator><creator>Datesman, Aaron M.</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201506</creationdate><title>A Simple GHz Resonator for Superconducting Materials Characterization</title><author>Jensen, Shauna M. ; Bass, Robert B. ; Lichtenberger, Arthur W. ; Datesman, Aaron M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c265t-535f84c93cb45c5a4c3bd724368728196636377e8c081fd4f7c879e37e7d1b883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Cavity resonators</topic><topic>cryotron</topic><topic>Current density</topic><topic>High-temperature superconductors</topic><topic>Niobium</topic><topic>Radio frequency</topic><topic>Resonant frequency</topic><topic>resonator</topic><topic>Superconducting microwave devices</topic><topic>vortex</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jensen, Shauna M.</creatorcontrib><creatorcontrib>Bass, Robert B.</creatorcontrib><creatorcontrib>Lichtenberger, Arthur W.</creatorcontrib><creatorcontrib>Datesman, Aaron M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on applied superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jensen, Shauna M.</au><au>Bass, Robert B.</au><au>Lichtenberger, Arthur W.</au><au>Datesman, Aaron M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Simple GHz Resonator for Superconducting Materials Characterization</atitle><jtitle>IEEE transactions on applied superconductivity</jtitle><stitle>TASC</stitle><date>2015-06</date><risdate>2015</risdate><volume>25</volume><issue>3</issue><spage>1</spage><epage>4</epage><pages>1-4</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><coden>ITASE9</coden><abstract>This work examines the design and operation of a longitudinal resonant cavity, paired with monopole send and reciprocal patch receive antennae, that couples radio-frequency energy to a superconducting thin film carrying high current densities (~10 5 A/cm 2 ). The dielectric substrate supporting the film penetrates the waveguide, which operates in an evanescent mode below the design cutoff frequency of 18 GHz. Oscillatory vortex motion in the thin film is found to produce a small (~0.1 mV) dc voltage. When the niobium film is patterned to form an aperture that permits resonant conditions within the waveguide volume, the measured voltage increases by an order of magnitude. The increase is explained in the framework of the Larkin-Ovchinnikov model for quasiparticle behavior inside a moving normal vortex core. Operated near the superconducting transition, this device is useful for materials characterization, including the possibility to extract parameters including the pinning force. The authors suggest that the device could be used to characterize the pinning potential or to explore quasiparticle dynamics in superconducting thin films.</abstract><pub>IEEE</pub><doi>10.1109/TASC.2014.2379285</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1051-8223 |
ispartof | IEEE transactions on applied superconductivity, 2015-06, Vol.25 (3), p.1-4 |
issn | 1051-8223 1558-2515 |
language | eng |
recordid | cdi_ieee_primary_6981907 |
source | IEEE Electronic Library (IEL) |
subjects | Cavity resonators cryotron Current density High-temperature superconductors Niobium Radio frequency Resonant frequency resonator Superconducting microwave devices vortex |
title | A Simple GHz Resonator for Superconducting Materials Characterization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T00%3A12%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Simple%20GHz%20Resonator%20for%20Superconducting%20Materials%20Characterization&rft.jtitle=IEEE%20transactions%20on%20applied%20superconductivity&rft.au=Jensen,%20Shauna%20M.&rft.date=2015-06&rft.volume=25&rft.issue=3&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.issn=1051-8223&rft.eissn=1558-2515&rft.coden=ITASE9&rft_id=info:doi/10.1109/TASC.2014.2379285&rft_dat=%3Ccrossref_RIE%3E10_1109_TASC_2014_2379285%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6981907&rfr_iscdi=true |