A Simple GHz Resonator for Superconducting Materials Characterization

This work examines the design and operation of a longitudinal resonant cavity, paired with monopole send and reciprocal patch receive antennae, that couples radio-frequency energy to a superconducting thin film carrying high current densities (~10 5 A/cm 2 ). The dielectric substrate supporting the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on applied superconductivity 2015-06, Vol.25 (3), p.1-4
Hauptverfasser: Jensen, Shauna M., Bass, Robert B., Lichtenberger, Arthur W., Datesman, Aaron M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4
container_issue 3
container_start_page 1
container_title IEEE transactions on applied superconductivity
container_volume 25
creator Jensen, Shauna M.
Bass, Robert B.
Lichtenberger, Arthur W.
Datesman, Aaron M.
description This work examines the design and operation of a longitudinal resonant cavity, paired with monopole send and reciprocal patch receive antennae, that couples radio-frequency energy to a superconducting thin film carrying high current densities (~10 5 A/cm 2 ). The dielectric substrate supporting the film penetrates the waveguide, which operates in an evanescent mode below the design cutoff frequency of 18 GHz. Oscillatory vortex motion in the thin film is found to produce a small (~0.1 mV) dc voltage. When the niobium film is patterned to form an aperture that permits resonant conditions within the waveguide volume, the measured voltage increases by an order of magnitude. The increase is explained in the framework of the Larkin-Ovchinnikov model for quasiparticle behavior inside a moving normal vortex core. Operated near the superconducting transition, this device is useful for materials characterization, including the possibility to extract parameters including the pinning force. The authors suggest that the device could be used to characterize the pinning potential or to explore quasiparticle dynamics in superconducting thin films.
doi_str_mv 10.1109/TASC.2014.2379285
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_6981907</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6981907</ieee_id><sourcerecordid>10_1109_TASC_2014_2379285</sourcerecordid><originalsourceid>FETCH-LOGICAL-c265t-535f84c93cb45c5a4c3bd724368728196636377e8c081fd4f7c879e37e7d1b883</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMoOKc_QLzJH2jNd9LLUuYmTAQ7r0OaphrZ2pJ0F-7Xm7LhxeF88L7vgQeAR4xyjFHxvCvrKicIs5xQWRDFr8ACc64ywjG_TjPiOFOE0FtwF-MPSkrF-AKsSlj7w7h3cL05wQ8Xh95MQ4Bdqvo4umCHvj3ayfdf8M1MLnizj7D6NsHYeTuZyQ_9Pbjp0t09XPoSfL6sdtUm276vX6tym1ki-JRxyjvFbEFtw7jlhlnatJIwKpQkChdCUEGldMoihbuWddIqWTgqnWxxoxRdAnzOtWGIMbhOj8EfTPjVGOmZg5456JmDvnBInqezxzvn_vWiSP-QpH8UFFkV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Simple GHz Resonator for Superconducting Materials Characterization</title><source>IEEE Electronic Library (IEL)</source><creator>Jensen, Shauna M. ; Bass, Robert B. ; Lichtenberger, Arthur W. ; Datesman, Aaron M.</creator><creatorcontrib>Jensen, Shauna M. ; Bass, Robert B. ; Lichtenberger, Arthur W. ; Datesman, Aaron M.</creatorcontrib><description>This work examines the design and operation of a longitudinal resonant cavity, paired with monopole send and reciprocal patch receive antennae, that couples radio-frequency energy to a superconducting thin film carrying high current densities (~10 5 A/cm 2 ). The dielectric substrate supporting the film penetrates the waveguide, which operates in an evanescent mode below the design cutoff frequency of 18 GHz. Oscillatory vortex motion in the thin film is found to produce a small (~0.1 mV) dc voltage. When the niobium film is patterned to form an aperture that permits resonant conditions within the waveguide volume, the measured voltage increases by an order of magnitude. The increase is explained in the framework of the Larkin-Ovchinnikov model for quasiparticle behavior inside a moving normal vortex core. Operated near the superconducting transition, this device is useful for materials characterization, including the possibility to extract parameters including the pinning force. The authors suggest that the device could be used to characterize the pinning potential or to explore quasiparticle dynamics in superconducting thin films.</description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/TASC.2014.2379285</identifier><identifier>CODEN: ITASE9</identifier><language>eng</language><publisher>IEEE</publisher><subject>Cavity resonators ; cryotron ; Current density ; High-temperature superconductors ; Niobium ; Radio frequency ; Resonant frequency ; resonator ; Superconducting microwave devices ; vortex</subject><ispartof>IEEE transactions on applied superconductivity, 2015-06, Vol.25 (3), p.1-4</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c265t-535f84c93cb45c5a4c3bd724368728196636377e8c081fd4f7c879e37e7d1b883</citedby><cites>FETCH-LOGICAL-c265t-535f84c93cb45c5a4c3bd724368728196636377e8c081fd4f7c879e37e7d1b883</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6981907$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6981907$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jensen, Shauna M.</creatorcontrib><creatorcontrib>Bass, Robert B.</creatorcontrib><creatorcontrib>Lichtenberger, Arthur W.</creatorcontrib><creatorcontrib>Datesman, Aaron M.</creatorcontrib><title>A Simple GHz Resonator for Superconducting Materials Characterization</title><title>IEEE transactions on applied superconductivity</title><addtitle>TASC</addtitle><description>This work examines the design and operation of a longitudinal resonant cavity, paired with monopole send and reciprocal patch receive antennae, that couples radio-frequency energy to a superconducting thin film carrying high current densities (~10 5 A/cm 2 ). The dielectric substrate supporting the film penetrates the waveguide, which operates in an evanescent mode below the design cutoff frequency of 18 GHz. Oscillatory vortex motion in the thin film is found to produce a small (~0.1 mV) dc voltage. When the niobium film is patterned to form an aperture that permits resonant conditions within the waveguide volume, the measured voltage increases by an order of magnitude. The increase is explained in the framework of the Larkin-Ovchinnikov model for quasiparticle behavior inside a moving normal vortex core. Operated near the superconducting transition, this device is useful for materials characterization, including the possibility to extract parameters including the pinning force. The authors suggest that the device could be used to characterize the pinning potential or to explore quasiparticle dynamics in superconducting thin films.</description><subject>Cavity resonators</subject><subject>cryotron</subject><subject>Current density</subject><subject>High-temperature superconductors</subject><subject>Niobium</subject><subject>Radio frequency</subject><subject>Resonant frequency</subject><subject>resonator</subject><subject>Superconducting microwave devices</subject><subject>vortex</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF1LwzAUhoMoOKc_QLzJH2jNd9LLUuYmTAQ7r0OaphrZ2pJ0F-7Xm7LhxeF88L7vgQeAR4xyjFHxvCvrKicIs5xQWRDFr8ACc64ywjG_TjPiOFOE0FtwF-MPSkrF-AKsSlj7w7h3cL05wQ8Xh95MQ4Bdqvo4umCHvj3ayfdf8M1MLnizj7D6NsHYeTuZyQ_9Pbjp0t09XPoSfL6sdtUm276vX6tym1ki-JRxyjvFbEFtw7jlhlnatJIwKpQkChdCUEGldMoihbuWddIqWTgqnWxxoxRdAnzOtWGIMbhOj8EfTPjVGOmZg5456JmDvnBInqezxzvn_vWiSP-QpH8UFFkV</recordid><startdate>201506</startdate><enddate>201506</enddate><creator>Jensen, Shauna M.</creator><creator>Bass, Robert B.</creator><creator>Lichtenberger, Arthur W.</creator><creator>Datesman, Aaron M.</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201506</creationdate><title>A Simple GHz Resonator for Superconducting Materials Characterization</title><author>Jensen, Shauna M. ; Bass, Robert B. ; Lichtenberger, Arthur W. ; Datesman, Aaron M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c265t-535f84c93cb45c5a4c3bd724368728196636377e8c081fd4f7c879e37e7d1b883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Cavity resonators</topic><topic>cryotron</topic><topic>Current density</topic><topic>High-temperature superconductors</topic><topic>Niobium</topic><topic>Radio frequency</topic><topic>Resonant frequency</topic><topic>resonator</topic><topic>Superconducting microwave devices</topic><topic>vortex</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jensen, Shauna M.</creatorcontrib><creatorcontrib>Bass, Robert B.</creatorcontrib><creatorcontrib>Lichtenberger, Arthur W.</creatorcontrib><creatorcontrib>Datesman, Aaron M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on applied superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jensen, Shauna M.</au><au>Bass, Robert B.</au><au>Lichtenberger, Arthur W.</au><au>Datesman, Aaron M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Simple GHz Resonator for Superconducting Materials Characterization</atitle><jtitle>IEEE transactions on applied superconductivity</jtitle><stitle>TASC</stitle><date>2015-06</date><risdate>2015</risdate><volume>25</volume><issue>3</issue><spage>1</spage><epage>4</epage><pages>1-4</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><coden>ITASE9</coden><abstract>This work examines the design and operation of a longitudinal resonant cavity, paired with monopole send and reciprocal patch receive antennae, that couples radio-frequency energy to a superconducting thin film carrying high current densities (~10 5 A/cm 2 ). The dielectric substrate supporting the film penetrates the waveguide, which operates in an evanescent mode below the design cutoff frequency of 18 GHz. Oscillatory vortex motion in the thin film is found to produce a small (~0.1 mV) dc voltage. When the niobium film is patterned to form an aperture that permits resonant conditions within the waveguide volume, the measured voltage increases by an order of magnitude. The increase is explained in the framework of the Larkin-Ovchinnikov model for quasiparticle behavior inside a moving normal vortex core. Operated near the superconducting transition, this device is useful for materials characterization, including the possibility to extract parameters including the pinning force. The authors suggest that the device could be used to characterize the pinning potential or to explore quasiparticle dynamics in superconducting thin films.</abstract><pub>IEEE</pub><doi>10.1109/TASC.2014.2379285</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1051-8223
ispartof IEEE transactions on applied superconductivity, 2015-06, Vol.25 (3), p.1-4
issn 1051-8223
1558-2515
language eng
recordid cdi_ieee_primary_6981907
source IEEE Electronic Library (IEL)
subjects Cavity resonators
cryotron
Current density
High-temperature superconductors
Niobium
Radio frequency
Resonant frequency
resonator
Superconducting microwave devices
vortex
title A Simple GHz Resonator for Superconducting Materials Characterization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T00%3A12%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Simple%20GHz%20Resonator%20for%20Superconducting%20Materials%20Characterization&rft.jtitle=IEEE%20transactions%20on%20applied%20superconductivity&rft.au=Jensen,%20Shauna%20M.&rft.date=2015-06&rft.volume=25&rft.issue=3&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.issn=1051-8223&rft.eissn=1558-2515&rft.coden=ITASE9&rft_id=info:doi/10.1109/TASC.2014.2379285&rft_dat=%3Ccrossref_RIE%3E10_1109_TASC_2014_2379285%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6981907&rfr_iscdi=true