Improving Differential Evolution With a Successful-Parent-Selecting Framework
An effective and efficient successful-parent-selecting framework is proposed to improve the performance of differential evolution (DE) by providing an alternative for the selection of parents during mutation and crossover. The proposed method adapts the selection of parents by storing successful sol...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on evolutionary computation 2015-10, Vol.19 (5), p.717-730 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 730 |
---|---|
container_issue | 5 |
container_start_page | 717 |
container_title | IEEE transactions on evolutionary computation |
container_volume | 19 |
creator | Shu-Mei Guo Chin-Chang Yang Pang-Han Hsu Tsai, Jason S.-H |
description | An effective and efficient successful-parent-selecting framework is proposed to improve the performance of differential evolution (DE) by providing an alternative for the selection of parents during mutation and crossover. The proposed method adapts the selection of parents by storing successful solutions into an archive, and the parents are selected from the archive when a solution is continuously not updated for an unacceptable amount of time. The proposed framework provides more promising solutions to guide the evolution and effectively helps DE escaping the situation of stagnation. The simulation results show that the proposed framework significantly improves the performance of two original DEs and six state-of-the-art algorithms in four real-world optimization problems and 30 benchmark functions. |
doi_str_mv | 10.1109/TEVC.2014.2375933 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_6971158</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6971158</ieee_id><sourcerecordid>3855271441</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-b411e3cc094b11d3e2eb918c8d257a202fa3facf3e002a53bd11854b1656a4173</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EEqXwAYhNJNYpHjuJ4yUqLVQqAqnlsbMcdwwpaVLspIi_x1ErVjOLc2euDiGXQEcAVN4sJ6_jEaOQjBgXqeT8iAxAJhBTyrLjsNNcxkLk76fkzPs1DWQKckAeZ5uta3Zl_RHdldaiw7otdRVNdk3VtWVTR29l-xnpaNEZg97broqfdU_FC6zQtH1y6vQGfxr3dU5OrK48XhzmkLxMJ8vxQzx_up-Nb-exYZK3cZEAIDeGyqQAWHFkWEjITb5iqdCMMqu51cZyDO11yosVQJ4GNksznYDgQ3K9vxu6f3foW7VuOleHlwoEkyAEzWigYE8Z13jv0KqtKzfa_Sqgqrememuqt6YO1kLmap8pEfGfz6QASHP-B01kaMk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1729177060</pqid></control><display><type>article</type><title>Improving Differential Evolution With a Successful-Parent-Selecting Framework</title><source>IEEE Electronic Library (IEL)</source><creator>Shu-Mei Guo ; Chin-Chang Yang ; Pang-Han Hsu ; Tsai, Jason S.-H</creator><creatorcontrib>Shu-Mei Guo ; Chin-Chang Yang ; Pang-Han Hsu ; Tsai, Jason S.-H</creatorcontrib><description>An effective and efficient successful-parent-selecting framework is proposed to improve the performance of differential evolution (DE) by providing an alternative for the selection of parents during mutation and crossover. The proposed method adapts the selection of parents by storing successful solutions into an archive, and the parents are selected from the archive when a solution is continuously not updated for an unacceptable amount of time. The proposed framework provides more promising solutions to guide the evolution and effectively helps DE escaping the situation of stagnation. The simulation results show that the proposed framework significantly improves the performance of two original DEs and six state-of-the-art algorithms in four real-world optimization problems and 30 benchmark functions.</description><identifier>ISSN: 1089-778X</identifier><identifier>EISSN: 1941-0026</identifier><identifier>DOI: 10.1109/TEVC.2014.2375933</identifier><identifier>CODEN: ITEVF5</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Benchmark testing ; Differential evolution ; global numerical optimization ; Linear programming ; Optimization ; parent adaptation ; Sociology ; stagnation ; Statistics ; Upper bound ; Vectors</subject><ispartof>IEEE transactions on evolutionary computation, 2015-10, Vol.19 (5), p.717-730</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Oct 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-b411e3cc094b11d3e2eb918c8d257a202fa3facf3e002a53bd11854b1656a4173</citedby><cites>FETCH-LOGICAL-c293t-b411e3cc094b11d3e2eb918c8d257a202fa3facf3e002a53bd11854b1656a4173</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6971158$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6971158$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Shu-Mei Guo</creatorcontrib><creatorcontrib>Chin-Chang Yang</creatorcontrib><creatorcontrib>Pang-Han Hsu</creatorcontrib><creatorcontrib>Tsai, Jason S.-H</creatorcontrib><title>Improving Differential Evolution With a Successful-Parent-Selecting Framework</title><title>IEEE transactions on evolutionary computation</title><addtitle>TEVC</addtitle><description>An effective and efficient successful-parent-selecting framework is proposed to improve the performance of differential evolution (DE) by providing an alternative for the selection of parents during mutation and crossover. The proposed method adapts the selection of parents by storing successful solutions into an archive, and the parents are selected from the archive when a solution is continuously not updated for an unacceptable amount of time. The proposed framework provides more promising solutions to guide the evolution and effectively helps DE escaping the situation of stagnation. The simulation results show that the proposed framework significantly improves the performance of two original DEs and six state-of-the-art algorithms in four real-world optimization problems and 30 benchmark functions.</description><subject>Benchmark testing</subject><subject>Differential evolution</subject><subject>global numerical optimization</subject><subject>Linear programming</subject><subject>Optimization</subject><subject>parent adaptation</subject><subject>Sociology</subject><subject>stagnation</subject><subject>Statistics</subject><subject>Upper bound</subject><subject>Vectors</subject><issn>1089-778X</issn><issn>1941-0026</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMtOwzAQRS0EEqXwAYhNJNYpHjuJ4yUqLVQqAqnlsbMcdwwpaVLspIi_x1ErVjOLc2euDiGXQEcAVN4sJ6_jEaOQjBgXqeT8iAxAJhBTyrLjsNNcxkLk76fkzPs1DWQKckAeZ5uta3Zl_RHdldaiw7otdRVNdk3VtWVTR29l-xnpaNEZg97broqfdU_FC6zQtH1y6vQGfxr3dU5OrK48XhzmkLxMJ8vxQzx_up-Nb-exYZK3cZEAIDeGyqQAWHFkWEjITb5iqdCMMqu51cZyDO11yosVQJ4GNksznYDgQ3K9vxu6f3foW7VuOleHlwoEkyAEzWigYE8Z13jv0KqtKzfa_Sqgqrememuqt6YO1kLmap8pEfGfz6QASHP-B01kaMk</recordid><startdate>201510</startdate><enddate>201510</enddate><creator>Shu-Mei Guo</creator><creator>Chin-Chang Yang</creator><creator>Pang-Han Hsu</creator><creator>Tsai, Jason S.-H</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201510</creationdate><title>Improving Differential Evolution With a Successful-Parent-Selecting Framework</title><author>Shu-Mei Guo ; Chin-Chang Yang ; Pang-Han Hsu ; Tsai, Jason S.-H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-b411e3cc094b11d3e2eb918c8d257a202fa3facf3e002a53bd11854b1656a4173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Benchmark testing</topic><topic>Differential evolution</topic><topic>global numerical optimization</topic><topic>Linear programming</topic><topic>Optimization</topic><topic>parent adaptation</topic><topic>Sociology</topic><topic>stagnation</topic><topic>Statistics</topic><topic>Upper bound</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shu-Mei Guo</creatorcontrib><creatorcontrib>Chin-Chang Yang</creatorcontrib><creatorcontrib>Pang-Han Hsu</creatorcontrib><creatorcontrib>Tsai, Jason S.-H</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on evolutionary computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shu-Mei Guo</au><au>Chin-Chang Yang</au><au>Pang-Han Hsu</au><au>Tsai, Jason S.-H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving Differential Evolution With a Successful-Parent-Selecting Framework</atitle><jtitle>IEEE transactions on evolutionary computation</jtitle><stitle>TEVC</stitle><date>2015-10</date><risdate>2015</risdate><volume>19</volume><issue>5</issue><spage>717</spage><epage>730</epage><pages>717-730</pages><issn>1089-778X</issn><eissn>1941-0026</eissn><coden>ITEVF5</coden><abstract>An effective and efficient successful-parent-selecting framework is proposed to improve the performance of differential evolution (DE) by providing an alternative for the selection of parents during mutation and crossover. The proposed method adapts the selection of parents by storing successful solutions into an archive, and the parents are selected from the archive when a solution is continuously not updated for an unacceptable amount of time. The proposed framework provides more promising solutions to guide the evolution and effectively helps DE escaping the situation of stagnation. The simulation results show that the proposed framework significantly improves the performance of two original DEs and six state-of-the-art algorithms in four real-world optimization problems and 30 benchmark functions.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TEVC.2014.2375933</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1089-778X |
ispartof | IEEE transactions on evolutionary computation, 2015-10, Vol.19 (5), p.717-730 |
issn | 1089-778X 1941-0026 |
language | eng |
recordid | cdi_ieee_primary_6971158 |
source | IEEE Electronic Library (IEL) |
subjects | Benchmark testing Differential evolution global numerical optimization Linear programming Optimization parent adaptation Sociology stagnation Statistics Upper bound Vectors |
title | Improving Differential Evolution With a Successful-Parent-Selecting Framework |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T11%3A35%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20Differential%20Evolution%20With%20a%20Successful-Parent-Selecting%20Framework&rft.jtitle=IEEE%20transactions%20on%20evolutionary%20computation&rft.au=Shu-Mei%20Guo&rft.date=2015-10&rft.volume=19&rft.issue=5&rft.spage=717&rft.epage=730&rft.pages=717-730&rft.issn=1089-778X&rft.eissn=1941-0026&rft.coden=ITEVF5&rft_id=info:doi/10.1109/TEVC.2014.2375933&rft_dat=%3Cproquest_RIE%3E3855271441%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1729177060&rft_id=info:pmid/&rft_ieee_id=6971158&rfr_iscdi=true |