Improving Differential Evolution With a Successful-Parent-Selecting Framework

An effective and efficient successful-parent-selecting framework is proposed to improve the performance of differential evolution (DE) by providing an alternative for the selection of parents during mutation and crossover. The proposed method adapts the selection of parents by storing successful sol...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on evolutionary computation 2015-10, Vol.19 (5), p.717-730
Hauptverfasser: Shu-Mei Guo, Chin-Chang Yang, Pang-Han Hsu, Tsai, Jason S.-H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 730
container_issue 5
container_start_page 717
container_title IEEE transactions on evolutionary computation
container_volume 19
creator Shu-Mei Guo
Chin-Chang Yang
Pang-Han Hsu
Tsai, Jason S.-H
description An effective and efficient successful-parent-selecting framework is proposed to improve the performance of differential evolution (DE) by providing an alternative for the selection of parents during mutation and crossover. The proposed method adapts the selection of parents by storing successful solutions into an archive, and the parents are selected from the archive when a solution is continuously not updated for an unacceptable amount of time. The proposed framework provides more promising solutions to guide the evolution and effectively helps DE escaping the situation of stagnation. The simulation results show that the proposed framework significantly improves the performance of two original DEs and six state-of-the-art algorithms in four real-world optimization problems and 30 benchmark functions.
doi_str_mv 10.1109/TEVC.2014.2375933
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_6971158</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6971158</ieee_id><sourcerecordid>3855271441</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-b411e3cc094b11d3e2eb918c8d257a202fa3facf3e002a53bd11854b1656a4173</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EEqXwAYhNJNYpHjuJ4yUqLVQqAqnlsbMcdwwpaVLspIi_x1ErVjOLc2euDiGXQEcAVN4sJ6_jEaOQjBgXqeT8iAxAJhBTyrLjsNNcxkLk76fkzPs1DWQKckAeZ5uta3Zl_RHdldaiw7otdRVNdk3VtWVTR29l-xnpaNEZg97broqfdU_FC6zQtH1y6vQGfxr3dU5OrK48XhzmkLxMJ8vxQzx_up-Nb-exYZK3cZEAIDeGyqQAWHFkWEjITb5iqdCMMqu51cZyDO11yosVQJ4GNksznYDgQ3K9vxu6f3foW7VuOleHlwoEkyAEzWigYE8Z13jv0KqtKzfa_Sqgqrememuqt6YO1kLmap8pEfGfz6QASHP-B01kaMk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1729177060</pqid></control><display><type>article</type><title>Improving Differential Evolution With a Successful-Parent-Selecting Framework</title><source>IEEE Electronic Library (IEL)</source><creator>Shu-Mei Guo ; Chin-Chang Yang ; Pang-Han Hsu ; Tsai, Jason S.-H</creator><creatorcontrib>Shu-Mei Guo ; Chin-Chang Yang ; Pang-Han Hsu ; Tsai, Jason S.-H</creatorcontrib><description>An effective and efficient successful-parent-selecting framework is proposed to improve the performance of differential evolution (DE) by providing an alternative for the selection of parents during mutation and crossover. The proposed method adapts the selection of parents by storing successful solutions into an archive, and the parents are selected from the archive when a solution is continuously not updated for an unacceptable amount of time. The proposed framework provides more promising solutions to guide the evolution and effectively helps DE escaping the situation of stagnation. The simulation results show that the proposed framework significantly improves the performance of two original DEs and six state-of-the-art algorithms in four real-world optimization problems and 30 benchmark functions.</description><identifier>ISSN: 1089-778X</identifier><identifier>EISSN: 1941-0026</identifier><identifier>DOI: 10.1109/TEVC.2014.2375933</identifier><identifier>CODEN: ITEVF5</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Benchmark testing ; Differential evolution ; global numerical optimization ; Linear programming ; Optimization ; parent adaptation ; Sociology ; stagnation ; Statistics ; Upper bound ; Vectors</subject><ispartof>IEEE transactions on evolutionary computation, 2015-10, Vol.19 (5), p.717-730</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Oct 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-b411e3cc094b11d3e2eb918c8d257a202fa3facf3e002a53bd11854b1656a4173</citedby><cites>FETCH-LOGICAL-c293t-b411e3cc094b11d3e2eb918c8d257a202fa3facf3e002a53bd11854b1656a4173</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6971158$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6971158$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Shu-Mei Guo</creatorcontrib><creatorcontrib>Chin-Chang Yang</creatorcontrib><creatorcontrib>Pang-Han Hsu</creatorcontrib><creatorcontrib>Tsai, Jason S.-H</creatorcontrib><title>Improving Differential Evolution With a Successful-Parent-Selecting Framework</title><title>IEEE transactions on evolutionary computation</title><addtitle>TEVC</addtitle><description>An effective and efficient successful-parent-selecting framework is proposed to improve the performance of differential evolution (DE) by providing an alternative for the selection of parents during mutation and crossover. The proposed method adapts the selection of parents by storing successful solutions into an archive, and the parents are selected from the archive when a solution is continuously not updated for an unacceptable amount of time. The proposed framework provides more promising solutions to guide the evolution and effectively helps DE escaping the situation of stagnation. The simulation results show that the proposed framework significantly improves the performance of two original DEs and six state-of-the-art algorithms in four real-world optimization problems and 30 benchmark functions.</description><subject>Benchmark testing</subject><subject>Differential evolution</subject><subject>global numerical optimization</subject><subject>Linear programming</subject><subject>Optimization</subject><subject>parent adaptation</subject><subject>Sociology</subject><subject>stagnation</subject><subject>Statistics</subject><subject>Upper bound</subject><subject>Vectors</subject><issn>1089-778X</issn><issn>1941-0026</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMtOwzAQRS0EEqXwAYhNJNYpHjuJ4yUqLVQqAqnlsbMcdwwpaVLspIi_x1ErVjOLc2euDiGXQEcAVN4sJ6_jEaOQjBgXqeT8iAxAJhBTyrLjsNNcxkLk76fkzPs1DWQKckAeZ5uta3Zl_RHdldaiw7otdRVNdk3VtWVTR29l-xnpaNEZg97broqfdU_FC6zQtH1y6vQGfxr3dU5OrK48XhzmkLxMJ8vxQzx_up-Nb-exYZK3cZEAIDeGyqQAWHFkWEjITb5iqdCMMqu51cZyDO11yosVQJ4GNksznYDgQ3K9vxu6f3foW7VuOleHlwoEkyAEzWigYE8Z13jv0KqtKzfa_Sqgqrememuqt6YO1kLmap8pEfGfz6QASHP-B01kaMk</recordid><startdate>201510</startdate><enddate>201510</enddate><creator>Shu-Mei Guo</creator><creator>Chin-Chang Yang</creator><creator>Pang-Han Hsu</creator><creator>Tsai, Jason S.-H</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201510</creationdate><title>Improving Differential Evolution With a Successful-Parent-Selecting Framework</title><author>Shu-Mei Guo ; Chin-Chang Yang ; Pang-Han Hsu ; Tsai, Jason S.-H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-b411e3cc094b11d3e2eb918c8d257a202fa3facf3e002a53bd11854b1656a4173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Benchmark testing</topic><topic>Differential evolution</topic><topic>global numerical optimization</topic><topic>Linear programming</topic><topic>Optimization</topic><topic>parent adaptation</topic><topic>Sociology</topic><topic>stagnation</topic><topic>Statistics</topic><topic>Upper bound</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shu-Mei Guo</creatorcontrib><creatorcontrib>Chin-Chang Yang</creatorcontrib><creatorcontrib>Pang-Han Hsu</creatorcontrib><creatorcontrib>Tsai, Jason S.-H</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on evolutionary computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shu-Mei Guo</au><au>Chin-Chang Yang</au><au>Pang-Han Hsu</au><au>Tsai, Jason S.-H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving Differential Evolution With a Successful-Parent-Selecting Framework</atitle><jtitle>IEEE transactions on evolutionary computation</jtitle><stitle>TEVC</stitle><date>2015-10</date><risdate>2015</risdate><volume>19</volume><issue>5</issue><spage>717</spage><epage>730</epage><pages>717-730</pages><issn>1089-778X</issn><eissn>1941-0026</eissn><coden>ITEVF5</coden><abstract>An effective and efficient successful-parent-selecting framework is proposed to improve the performance of differential evolution (DE) by providing an alternative for the selection of parents during mutation and crossover. The proposed method adapts the selection of parents by storing successful solutions into an archive, and the parents are selected from the archive when a solution is continuously not updated for an unacceptable amount of time. The proposed framework provides more promising solutions to guide the evolution and effectively helps DE escaping the situation of stagnation. The simulation results show that the proposed framework significantly improves the performance of two original DEs and six state-of-the-art algorithms in four real-world optimization problems and 30 benchmark functions.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TEVC.2014.2375933</doi><tpages>14</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1089-778X
ispartof IEEE transactions on evolutionary computation, 2015-10, Vol.19 (5), p.717-730
issn 1089-778X
1941-0026
language eng
recordid cdi_ieee_primary_6971158
source IEEE Electronic Library (IEL)
subjects Benchmark testing
Differential evolution
global numerical optimization
Linear programming
Optimization
parent adaptation
Sociology
stagnation
Statistics
Upper bound
Vectors
title Improving Differential Evolution With a Successful-Parent-Selecting Framework
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T11%3A35%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20Differential%20Evolution%20With%20a%20Successful-Parent-Selecting%20Framework&rft.jtitle=IEEE%20transactions%20on%20evolutionary%20computation&rft.au=Shu-Mei%20Guo&rft.date=2015-10&rft.volume=19&rft.issue=5&rft.spage=717&rft.epage=730&rft.pages=717-730&rft.issn=1089-778X&rft.eissn=1941-0026&rft.coden=ITEVF5&rft_id=info:doi/10.1109/TEVC.2014.2375933&rft_dat=%3Cproquest_RIE%3E3855271441%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1729177060&rft_id=info:pmid/&rft_ieee_id=6971158&rfr_iscdi=true