Stabilization of Polynomial Nonlinear Systems by Algebraic Geometry Techniques
This technical note applies methods from Algebraic Geometry, namely polynomial ideals and sub-modules, to find parameterized sets of state-feedback stabilizing control laws for polynomial, continuous-time, affine nonlinear systems. The proposed method is illustrated by simple examples.
Gespeichert in:
Veröffentlicht in: | IEEE transactions on automatic control 2015-09, Vol.60 (9), p.2482-2487 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2487 |
---|---|
container_issue | 9 |
container_start_page | 2482 |
container_title | IEEE transactions on automatic control |
container_volume | 60 |
creator | Menini, Laura Tornambe, Antonio |
description | This technical note applies methods from Algebraic Geometry, namely polynomial ideals and sub-modules, to find parameterized sets of state-feedback stabilizing control laws for polynomial, continuous-time, affine nonlinear systems. The proposed method is illustrated by simple examples. |
doi_str_mv | 10.1109/TAC.2014.2375751 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_6971125</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6971125</ieee_id><sourcerecordid>1753485817</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-4d16e4d43f07cd3a4efcd272f8fca92849a47600f0cc7b0d51c514f942a05893</originalsourceid><addsrcrecordid>eNpdkM1LwzAYh4MoOD_ugpeAFy-d-Wza4xg6hTGF9R7SNNGMtJlJd6h_vS0bHjy9vPD8fu_LA8AdRnOMUflULZZzgjCbEyq44PgMzDDnRUY4oedghhAuspIU-SW4Smk3rjljeAY2217Vzrsf1bvQwWDhR_BDF1qnPNyEzrvOqAi3Q-pNm2A9wIX_NHVUTsOVCa3p4wAro786930w6QZcWOWTuT3Na1C9PFfL12z9vnpbLtaZpoT1GWtwbljDqEVCN1QxY3VDBLGF1Wr8kpWKiRwhi7QWNWo41hwzWzKiEC9Keg0ej7X7GKazvWxd0sZ71ZlwSBILTlnBCyxG9OEfuguH2I3PjRQSRU45mwrRkdIxpBSNlfvoWhUHiZGc_MrRr5z8ypPfMXJ_jDhjzB-elwJjwukvrzd2Eg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1707863549</pqid></control><display><type>article</type><title>Stabilization of Polynomial Nonlinear Systems by Algebraic Geometry Techniques</title><source>IEEE Electronic Library (IEL)</source><creator>Menini, Laura ; Tornambe, Antonio</creator><creatorcontrib>Menini, Laura ; Tornambe, Antonio</creatorcontrib><description>This technical note applies methods from Algebraic Geometry, namely polynomial ideals and sub-modules, to find parameterized sets of state-feedback stabilizing control laws for polynomial, continuous-time, affine nonlinear systems. The proposed method is illustrated by simple examples.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2014.2375751</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algebra ; Algebraic Geometry ; Automatic control ; Closed loop systems ; Control systems ; Dynamical systems ; Geometry ; Lyapunov methods ; Nonlinear dynamics ; Polynomial systems ; Polynomials ; Stabilization ; statefeedback stabilization ; Vectors</subject><ispartof>IEEE transactions on automatic control, 2015-09, Vol.60 (9), p.2482-2487</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c324t-4d16e4d43f07cd3a4efcd272f8fca92849a47600f0cc7b0d51c514f942a05893</citedby><cites>FETCH-LOGICAL-c324t-4d16e4d43f07cd3a4efcd272f8fca92849a47600f0cc7b0d51c514f942a05893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6971125$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6971125$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Menini, Laura</creatorcontrib><creatorcontrib>Tornambe, Antonio</creatorcontrib><title>Stabilization of Polynomial Nonlinear Systems by Algebraic Geometry Techniques</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>This technical note applies methods from Algebraic Geometry, namely polynomial ideals and sub-modules, to find parameterized sets of state-feedback stabilizing control laws for polynomial, continuous-time, affine nonlinear systems. The proposed method is illustrated by simple examples.</description><subject>Algebra</subject><subject>Algebraic Geometry</subject><subject>Automatic control</subject><subject>Closed loop systems</subject><subject>Control systems</subject><subject>Dynamical systems</subject><subject>Geometry</subject><subject>Lyapunov methods</subject><subject>Nonlinear dynamics</subject><subject>Polynomial systems</subject><subject>Polynomials</subject><subject>Stabilization</subject><subject>statefeedback stabilization</subject><subject>Vectors</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkM1LwzAYh4MoOD_ugpeAFy-d-Wza4xg6hTGF9R7SNNGMtJlJd6h_vS0bHjy9vPD8fu_LA8AdRnOMUflULZZzgjCbEyq44PgMzDDnRUY4oedghhAuspIU-SW4Smk3rjljeAY2217Vzrsf1bvQwWDhR_BDF1qnPNyEzrvOqAi3Q-pNm2A9wIX_NHVUTsOVCa3p4wAro786930w6QZcWOWTuT3Na1C9PFfL12z9vnpbLtaZpoT1GWtwbljDqEVCN1QxY3VDBLGF1Wr8kpWKiRwhi7QWNWo41hwzWzKiEC9Keg0ej7X7GKazvWxd0sZ71ZlwSBILTlnBCyxG9OEfuguH2I3PjRQSRU45mwrRkdIxpBSNlfvoWhUHiZGc_MrRr5z8ypPfMXJ_jDhjzB-elwJjwukvrzd2Eg</recordid><startdate>201509</startdate><enddate>201509</enddate><creator>Menini, Laura</creator><creator>Tornambe, Antonio</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope></search><sort><creationdate>201509</creationdate><title>Stabilization of Polynomial Nonlinear Systems by Algebraic Geometry Techniques</title><author>Menini, Laura ; Tornambe, Antonio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-4d16e4d43f07cd3a4efcd272f8fca92849a47600f0cc7b0d51c514f942a05893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algebra</topic><topic>Algebraic Geometry</topic><topic>Automatic control</topic><topic>Closed loop systems</topic><topic>Control systems</topic><topic>Dynamical systems</topic><topic>Geometry</topic><topic>Lyapunov methods</topic><topic>Nonlinear dynamics</topic><topic>Polynomial systems</topic><topic>Polynomials</topic><topic>Stabilization</topic><topic>statefeedback stabilization</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Menini, Laura</creatorcontrib><creatorcontrib>Tornambe, Antonio</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Menini, Laura</au><au>Tornambe, Antonio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stabilization of Polynomial Nonlinear Systems by Algebraic Geometry Techniques</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2015-09</date><risdate>2015</risdate><volume>60</volume><issue>9</issue><spage>2482</spage><epage>2487</epage><pages>2482-2487</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>This technical note applies methods from Algebraic Geometry, namely polynomial ideals and sub-modules, to find parameterized sets of state-feedback stabilizing control laws for polynomial, continuous-time, affine nonlinear systems. The proposed method is illustrated by simple examples.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAC.2014.2375751</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9286 |
ispartof | IEEE transactions on automatic control, 2015-09, Vol.60 (9), p.2482-2487 |
issn | 0018-9286 1558-2523 |
language | eng |
recordid | cdi_ieee_primary_6971125 |
source | IEEE Electronic Library (IEL) |
subjects | Algebra Algebraic Geometry Automatic control Closed loop systems Control systems Dynamical systems Geometry Lyapunov methods Nonlinear dynamics Polynomial systems Polynomials Stabilization statefeedback stabilization Vectors |
title | Stabilization of Polynomial Nonlinear Systems by Algebraic Geometry Techniques |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T22%3A39%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stabilization%20of%20Polynomial%20Nonlinear%20Systems%20by%20Algebraic%20Geometry%20Techniques&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Menini,%20Laura&rft.date=2015-09&rft.volume=60&rft.issue=9&rft.spage=2482&rft.epage=2487&rft.pages=2482-2487&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2014.2375751&rft_dat=%3Cproquest_RIE%3E1753485817%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1707863549&rft_id=info:pmid/&rft_ieee_id=6971125&rfr_iscdi=true |