Stabilization of Polynomial Nonlinear Systems by Algebraic Geometry Techniques

This technical note applies methods from Algebraic Geometry, namely polynomial ideals and sub-modules, to find parameterized sets of state-feedback stabilizing control laws for polynomial, continuous-time, affine nonlinear systems. The proposed method is illustrated by simple examples.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automatic control 2015-09, Vol.60 (9), p.2482-2487
Hauptverfasser: Menini, Laura, Tornambe, Antonio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2487
container_issue 9
container_start_page 2482
container_title IEEE transactions on automatic control
container_volume 60
creator Menini, Laura
Tornambe, Antonio
description This technical note applies methods from Algebraic Geometry, namely polynomial ideals and sub-modules, to find parameterized sets of state-feedback stabilizing control laws for polynomial, continuous-time, affine nonlinear systems. The proposed method is illustrated by simple examples.
doi_str_mv 10.1109/TAC.2014.2375751
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_6971125</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6971125</ieee_id><sourcerecordid>1753485817</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-4d16e4d43f07cd3a4efcd272f8fca92849a47600f0cc7b0d51c514f942a05893</originalsourceid><addsrcrecordid>eNpdkM1LwzAYh4MoOD_ugpeAFy-d-Wza4xg6hTGF9R7SNNGMtJlJd6h_vS0bHjy9vPD8fu_LA8AdRnOMUflULZZzgjCbEyq44PgMzDDnRUY4oedghhAuspIU-SW4Smk3rjljeAY2217Vzrsf1bvQwWDhR_BDF1qnPNyEzrvOqAi3Q-pNm2A9wIX_NHVUTsOVCa3p4wAro786930w6QZcWOWTuT3Na1C9PFfL12z9vnpbLtaZpoT1GWtwbljDqEVCN1QxY3VDBLGF1Wr8kpWKiRwhi7QWNWo41hwzWzKiEC9Keg0ej7X7GKazvWxd0sZ71ZlwSBILTlnBCyxG9OEfuguH2I3PjRQSRU45mwrRkdIxpBSNlfvoWhUHiZGc_MrRr5z8ypPfMXJ_jDhjzB-elwJjwukvrzd2Eg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1707863549</pqid></control><display><type>article</type><title>Stabilization of Polynomial Nonlinear Systems by Algebraic Geometry Techniques</title><source>IEEE Electronic Library (IEL)</source><creator>Menini, Laura ; Tornambe, Antonio</creator><creatorcontrib>Menini, Laura ; Tornambe, Antonio</creatorcontrib><description>This technical note applies methods from Algebraic Geometry, namely polynomial ideals and sub-modules, to find parameterized sets of state-feedback stabilizing control laws for polynomial, continuous-time, affine nonlinear systems. The proposed method is illustrated by simple examples.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2014.2375751</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algebra ; Algebraic Geometry ; Automatic control ; Closed loop systems ; Control systems ; Dynamical systems ; Geometry ; Lyapunov methods ; Nonlinear dynamics ; Polynomial systems ; Polynomials ; Stabilization ; statefeedback stabilization ; Vectors</subject><ispartof>IEEE transactions on automatic control, 2015-09, Vol.60 (9), p.2482-2487</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c324t-4d16e4d43f07cd3a4efcd272f8fca92849a47600f0cc7b0d51c514f942a05893</citedby><cites>FETCH-LOGICAL-c324t-4d16e4d43f07cd3a4efcd272f8fca92849a47600f0cc7b0d51c514f942a05893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6971125$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6971125$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Menini, Laura</creatorcontrib><creatorcontrib>Tornambe, Antonio</creatorcontrib><title>Stabilization of Polynomial Nonlinear Systems by Algebraic Geometry Techniques</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>This technical note applies methods from Algebraic Geometry, namely polynomial ideals and sub-modules, to find parameterized sets of state-feedback stabilizing control laws for polynomial, continuous-time, affine nonlinear systems. The proposed method is illustrated by simple examples.</description><subject>Algebra</subject><subject>Algebraic Geometry</subject><subject>Automatic control</subject><subject>Closed loop systems</subject><subject>Control systems</subject><subject>Dynamical systems</subject><subject>Geometry</subject><subject>Lyapunov methods</subject><subject>Nonlinear dynamics</subject><subject>Polynomial systems</subject><subject>Polynomials</subject><subject>Stabilization</subject><subject>statefeedback stabilization</subject><subject>Vectors</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkM1LwzAYh4MoOD_ugpeAFy-d-Wza4xg6hTGF9R7SNNGMtJlJd6h_vS0bHjy9vPD8fu_LA8AdRnOMUflULZZzgjCbEyq44PgMzDDnRUY4oedghhAuspIU-SW4Smk3rjljeAY2217Vzrsf1bvQwWDhR_BDF1qnPNyEzrvOqAi3Q-pNm2A9wIX_NHVUTsOVCa3p4wAro786930w6QZcWOWTuT3Na1C9PFfL12z9vnpbLtaZpoT1GWtwbljDqEVCN1QxY3VDBLGF1Wr8kpWKiRwhi7QWNWo41hwzWzKiEC9Keg0ej7X7GKazvWxd0sZ71ZlwSBILTlnBCyxG9OEfuguH2I3PjRQSRU45mwrRkdIxpBSNlfvoWhUHiZGc_MrRr5z8ypPfMXJ_jDhjzB-elwJjwukvrzd2Eg</recordid><startdate>201509</startdate><enddate>201509</enddate><creator>Menini, Laura</creator><creator>Tornambe, Antonio</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope></search><sort><creationdate>201509</creationdate><title>Stabilization of Polynomial Nonlinear Systems by Algebraic Geometry Techniques</title><author>Menini, Laura ; Tornambe, Antonio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-4d16e4d43f07cd3a4efcd272f8fca92849a47600f0cc7b0d51c514f942a05893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algebra</topic><topic>Algebraic Geometry</topic><topic>Automatic control</topic><topic>Closed loop systems</topic><topic>Control systems</topic><topic>Dynamical systems</topic><topic>Geometry</topic><topic>Lyapunov methods</topic><topic>Nonlinear dynamics</topic><topic>Polynomial systems</topic><topic>Polynomials</topic><topic>Stabilization</topic><topic>statefeedback stabilization</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Menini, Laura</creatorcontrib><creatorcontrib>Tornambe, Antonio</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Menini, Laura</au><au>Tornambe, Antonio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stabilization of Polynomial Nonlinear Systems by Algebraic Geometry Techniques</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2015-09</date><risdate>2015</risdate><volume>60</volume><issue>9</issue><spage>2482</spage><epage>2487</epage><pages>2482-2487</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>This technical note applies methods from Algebraic Geometry, namely polynomial ideals and sub-modules, to find parameterized sets of state-feedback stabilizing control laws for polynomial, continuous-time, affine nonlinear systems. The proposed method is illustrated by simple examples.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAC.2014.2375751</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9286
ispartof IEEE transactions on automatic control, 2015-09, Vol.60 (9), p.2482-2487
issn 0018-9286
1558-2523
language eng
recordid cdi_ieee_primary_6971125
source IEEE Electronic Library (IEL)
subjects Algebra
Algebraic Geometry
Automatic control
Closed loop systems
Control systems
Dynamical systems
Geometry
Lyapunov methods
Nonlinear dynamics
Polynomial systems
Polynomials
Stabilization
statefeedback stabilization
Vectors
title Stabilization of Polynomial Nonlinear Systems by Algebraic Geometry Techniques
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T22%3A39%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stabilization%20of%20Polynomial%20Nonlinear%20Systems%20by%20Algebraic%20Geometry%20Techniques&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Menini,%20Laura&rft.date=2015-09&rft.volume=60&rft.issue=9&rft.spage=2482&rft.epage=2487&rft.pages=2482-2487&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2014.2375751&rft_dat=%3Cproquest_RIE%3E1753485817%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1707863549&rft_id=info:pmid/&rft_ieee_id=6971125&rfr_iscdi=true