Modeling of Wide Bandgap Power Semiconductor Devices-Part I
Wide bandgap power devices have emerged as an often superior alternative power switch technology for many power electronic applications. These devices theoretically have excellent material properties enabling power device operation at higher switching frequencies and higher temperatures compared wit...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on electron devices 2015-02, Vol.62 (2), p.423-433 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 433 |
---|---|
container_issue | 2 |
container_start_page | 423 |
container_title | IEEE transactions on electron devices |
container_volume | 62 |
creator | Mantooth, Homer Alan Kang Peng Santi, Enrico Hudgins, Jerry L. |
description | Wide bandgap power devices have emerged as an often superior alternative power switch technology for many power electronic applications. These devices theoretically have excellent material properties enabling power device operation at higher switching frequencies and higher temperatures compared with conventional silicon devices. However, material defects can dominate device behavior, particularly over time, and this should be strongly considered when trying to model actual characteristics of currently available devices. Compact models of wide bandgap power devices are necessary to analyze and evaluate their impact on circuit and system performance. Available compact models, i.e., models compatible with circuit-level simulators, are reviewed. In particular, this paper presents a review of compact models for silicon carbide power diodes and MOSFETs. |
doi_str_mv | 10.1109/TED.2014.2368274 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_6967850</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6967850</ieee_id><sourcerecordid>10_1109_TED_2014_2368274</sourcerecordid><originalsourceid>FETCH-LOGICAL-c450t-3f379927dd5294e5c62b3431dc1519e59ffd82ca3e19a5c0004e73af48844f043</originalsourceid><addsrcrecordid>eNo9j8FKAzEURYMoWKt7wU1-YOpL8pJJcKVt1ULFghWXQ0xeykjbKZnR4t_b0uLqcuGeC4exawEDIcDdzsejgQSBA6mMlSWesJ7QuiycQXPKegDCFk5Zdc4u2vZrVw2i7LG7lybSsl4veJP4Rx2JP_h1XPgNnzVbyvyNVnVo1vE7dE3mI_qpA7XFzOeOTy7ZWfLLlq6O2Wfvj-P58LmYvj5NhvfTIqCGrlBJlc7JMkYtHZIORn4qVCIGoYUj7VKKVgavSDivAwAglcontBYxAao-g8NvyE3bZkrVJtcrn38rAdVevtrJV3v56ii_Q24OSE1E_3PjTGk1qD-xwVQA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Modeling of Wide Bandgap Power Semiconductor Devices-Part I</title><source>IEEE Electronic Library (IEL)</source><creator>Mantooth, Homer Alan ; Kang Peng ; Santi, Enrico ; Hudgins, Jerry L.</creator><creatorcontrib>Mantooth, Homer Alan ; Kang Peng ; Santi, Enrico ; Hudgins, Jerry L.</creatorcontrib><description>Wide bandgap power devices have emerged as an often superior alternative power switch technology for many power electronic applications. These devices theoretically have excellent material properties enabling power device operation at higher switching frequencies and higher temperatures compared with conventional silicon devices. However, material defects can dominate device behavior, particularly over time, and this should be strongly considered when trying to model actual characteristics of currently available devices. Compact models of wide bandgap power devices are necessary to analyze and evaluate their impact on circuit and system performance. Available compact models, i.e., models compatible with circuit-level simulators, are reviewed. In particular, this paper presents a review of compact models for silicon carbide power diodes and MOSFETs.</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2014.2368274</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computational modeling ; Gallium-nitride (GaN) ; Integrated circuit modeling ; Mathematical model ; modeling ; power device modeling ; power semiconductor devices ; Schottky diodes ; Semiconductor device modeling ; Silicon ; Silicon carbide ; silicon-carbide (SiC) ; wide bandgap</subject><ispartof>IEEE transactions on electron devices, 2015-02, Vol.62 (2), p.423-433</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c450t-3f379927dd5294e5c62b3431dc1519e59ffd82ca3e19a5c0004e73af48844f043</citedby><cites>FETCH-LOGICAL-c450t-3f379927dd5294e5c62b3431dc1519e59ffd82ca3e19a5c0004e73af48844f043</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6967850$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6967850$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Mantooth, Homer Alan</creatorcontrib><creatorcontrib>Kang Peng</creatorcontrib><creatorcontrib>Santi, Enrico</creatorcontrib><creatorcontrib>Hudgins, Jerry L.</creatorcontrib><title>Modeling of Wide Bandgap Power Semiconductor Devices-Part I</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>Wide bandgap power devices have emerged as an often superior alternative power switch technology for many power electronic applications. These devices theoretically have excellent material properties enabling power device operation at higher switching frequencies and higher temperatures compared with conventional silicon devices. However, material defects can dominate device behavior, particularly over time, and this should be strongly considered when trying to model actual characteristics of currently available devices. Compact models of wide bandgap power devices are necessary to analyze and evaluate their impact on circuit and system performance. Available compact models, i.e., models compatible with circuit-level simulators, are reviewed. In particular, this paper presents a review of compact models for silicon carbide power diodes and MOSFETs.</description><subject>Computational modeling</subject><subject>Gallium-nitride (GaN)</subject><subject>Integrated circuit modeling</subject><subject>Mathematical model</subject><subject>modeling</subject><subject>power device modeling</subject><subject>power semiconductor devices</subject><subject>Schottky diodes</subject><subject>Semiconductor device modeling</subject><subject>Silicon</subject><subject>Silicon carbide</subject><subject>silicon-carbide (SiC)</subject><subject>wide bandgap</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9j8FKAzEURYMoWKt7wU1-YOpL8pJJcKVt1ULFghWXQ0xeykjbKZnR4t_b0uLqcuGeC4exawEDIcDdzsejgQSBA6mMlSWesJ7QuiycQXPKegDCFk5Zdc4u2vZrVw2i7LG7lybSsl4veJP4Rx2JP_h1XPgNnzVbyvyNVnVo1vE7dE3mI_qpA7XFzOeOTy7ZWfLLlq6O2Wfvj-P58LmYvj5NhvfTIqCGrlBJlc7JMkYtHZIORn4qVCIGoYUj7VKKVgavSDivAwAglcontBYxAao-g8NvyE3bZkrVJtcrn38rAdVevtrJV3v56ii_Q24OSE1E_3PjTGk1qD-xwVQA</recordid><startdate>20150201</startdate><enddate>20150201</enddate><creator>Mantooth, Homer Alan</creator><creator>Kang Peng</creator><creator>Santi, Enrico</creator><creator>Hudgins, Jerry L.</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20150201</creationdate><title>Modeling of Wide Bandgap Power Semiconductor Devices-Part I</title><author>Mantooth, Homer Alan ; Kang Peng ; Santi, Enrico ; Hudgins, Jerry L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c450t-3f379927dd5294e5c62b3431dc1519e59ffd82ca3e19a5c0004e73af48844f043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Computational modeling</topic><topic>Gallium-nitride (GaN)</topic><topic>Integrated circuit modeling</topic><topic>Mathematical model</topic><topic>modeling</topic><topic>power device modeling</topic><topic>power semiconductor devices</topic><topic>Schottky diodes</topic><topic>Semiconductor device modeling</topic><topic>Silicon</topic><topic>Silicon carbide</topic><topic>silicon-carbide (SiC)</topic><topic>wide bandgap</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mantooth, Homer Alan</creatorcontrib><creatorcontrib>Kang Peng</creatorcontrib><creatorcontrib>Santi, Enrico</creatorcontrib><creatorcontrib>Hudgins, Jerry L.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mantooth, Homer Alan</au><au>Kang Peng</au><au>Santi, Enrico</au><au>Hudgins, Jerry L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling of Wide Bandgap Power Semiconductor Devices-Part I</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2015-02-01</date><risdate>2015</risdate><volume>62</volume><issue>2</issue><spage>423</spage><epage>433</epage><pages>423-433</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>Wide bandgap power devices have emerged as an often superior alternative power switch technology for many power electronic applications. These devices theoretically have excellent material properties enabling power device operation at higher switching frequencies and higher temperatures compared with conventional silicon devices. However, material defects can dominate device behavior, particularly over time, and this should be strongly considered when trying to model actual characteristics of currently available devices. Compact models of wide bandgap power devices are necessary to analyze and evaluate their impact on circuit and system performance. Available compact models, i.e., models compatible with circuit-level simulators, are reviewed. In particular, this paper presents a review of compact models for silicon carbide power diodes and MOSFETs.</abstract><pub>IEEE</pub><doi>10.1109/TED.2014.2368274</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9383 |
ispartof | IEEE transactions on electron devices, 2015-02, Vol.62 (2), p.423-433 |
issn | 0018-9383 1557-9646 |
language | eng |
recordid | cdi_ieee_primary_6967850 |
source | IEEE Electronic Library (IEL) |
subjects | Computational modeling Gallium-nitride (GaN) Integrated circuit modeling Mathematical model modeling power device modeling power semiconductor devices Schottky diodes Semiconductor device modeling Silicon Silicon carbide silicon-carbide (SiC) wide bandgap |
title | Modeling of Wide Bandgap Power Semiconductor Devices-Part I |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T22%3A39%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20of%20Wide%20Bandgap%20Power%20Semiconductor%20Devices-Part%20I&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Mantooth,%20Homer%20Alan&rft.date=2015-02-01&rft.volume=62&rft.issue=2&rft.spage=423&rft.epage=433&rft.pages=423-433&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2014.2368274&rft_dat=%3Ccrossref_RIE%3E10_1109_TED_2014_2368274%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6967850&rfr_iscdi=true |