Modeling and Characterization of Slow-Wave Microstrip Lines on Metallic-Nanowire- Filled-Membrane Substrate
In this paper, a physical model of the slow-wave (SW) microstrip lines based on a metallic-nanowire-filled-membrane substrate is presented for the first time. The model properly predicts the behavior of the SW transmission lines as shown by the experimental results. Two sets of transmission lines di...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on microwave theory and techniques 2014-12, Vol.62 (12), p.3249-3254 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3254 |
---|---|
container_issue | 12 |
container_start_page | 3249 |
container_title | IEEE transactions on microwave theory and techniques |
container_volume | 62 |
creator | Serrano, A. L. C. Franc, A.-L Assis, D. P. Podevin, F. Rehder, G. P. Corrao, N. Ferrari, P. |
description | In this paper, a physical model of the slow-wave (SW) microstrip lines based on a metallic-nanowire-filled-membrane substrate is presented for the first time. The model properly predicts the behavior of the SW transmission lines as shown by the experimental results. Two sets of transmission lines differing in oxide thickness with various widths were fabricated and characterized up to 70 GHz. The electrical model is valid for both oxide thicknesses and microstrips width. High-quality factors are obtained, above 40 from 30 GHz up to 70 GHz, paving the way for further designs of passive circuits, like power dividers or hybrid couplers, with good performance. |
doi_str_mv | 10.1109/TMTT.2014.2366108 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_6960106</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6960106</ieee_id><sourcerecordid>3516623021</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-55fb215c32f233dcd22daced4c60d2efcbadf25f4992396b0a1de82d397edf803</originalsourceid><addsrcrecordid>eNo9kE1P3DAQhq0KpC4fP6DqxVJPPXgZ24kTH9GqC0gbOLCIo-XY42Ia4q2TBdFf30SLOI1m9LyvRg8h3zgsOQd9sW2226UAXiyFVIpD_YUseFlWTKsKjsgCgNdMFzV8JSfD8DytRQn1gvxpkscu9r-p7T1dPdls3Yg5_rNjTD1Ngd536Y092lekTXQ5DWOOO7qJPQ50AhocbddFx25tn95iRkbXsevQswZf2mx7pPf7dgrZEc_IcbDdgOcf85Q8rH9tV9dsc3d1s7rcMCcVjKwsQyt46aQIQkrvvBDeOvSFU-AFBtdaH0QZCq2F1KoFyz3WwktdoQ81yFPy89D7ZDuzy_HF5neTbDTXlxsz32ASJWQtXvnE_jiwu5z-7nEYzXPa5356z3AlgVeVLqqJ4gdqFjBkDJ-1HMzs38z-zezffPifMt8PmYiIn7zSCjgo-R_qvYII</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1630177947</pqid></control><display><type>article</type><title>Modeling and Characterization of Slow-Wave Microstrip Lines on Metallic-Nanowire- Filled-Membrane Substrate</title><source>IEEE Electronic Library Online</source><creator>Serrano, A. L. C. ; Franc, A.-L ; Assis, D. P. ; Podevin, F. ; Rehder, G. P. ; Corrao, N. ; Ferrari, P.</creator><creatorcontrib>Serrano, A. L. C. ; Franc, A.-L ; Assis, D. P. ; Podevin, F. ; Rehder, G. P. ; Corrao, N. ; Ferrari, P.</creatorcontrib><description>In this paper, a physical model of the slow-wave (SW) microstrip lines based on a metallic-nanowire-filled-membrane substrate is presented for the first time. The model properly predicts the behavior of the SW transmission lines as shown by the experimental results. Two sets of transmission lines differing in oxide thickness with various widths were fabricated and characterized up to 70 GHz. The electrical model is valid for both oxide thicknesses and microstrips width. High-quality factors are obtained, above 40 from 30 GHz up to 70 GHz, paving the way for further designs of passive circuits, like power dividers or hybrid couplers, with good performance.</description><identifier>ISSN: 0018-9480</identifier><identifier>EISSN: 1557-9670</identifier><identifier>DOI: 10.1109/TMTT.2014.2366108</identifier><identifier>CODEN: IETMAB</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Dielectric measurement ; Dielectrics ; Electromagnetism ; Electronics ; Engineering Sciences ; Low-cost substrate ; Micro and nanotechnologies ; Microelectronics ; Microstrip ; microstrip devices ; millimeter-wave (mmW) propagation ; Nanowires ; Power transmission lines ; slow-wave (SW) structures ; Substrates ; Transmission line measurements</subject><ispartof>IEEE transactions on microwave theory and techniques, 2014-12, Vol.62 (12), p.3249-3254</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Dec 2014</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-55fb215c32f233dcd22daced4c60d2efcbadf25f4992396b0a1de82d397edf803</citedby><cites>FETCH-LOGICAL-c360t-55fb215c32f233dcd22daced4c60d2efcbadf25f4992396b0a1de82d397edf803</cites><orcidid>0000-0002-7655-2958 ; 0000-0002-8477-5617</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6960106$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,796,885,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6960106$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://hal.science/hal-02012382$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Serrano, A. L. C.</creatorcontrib><creatorcontrib>Franc, A.-L</creatorcontrib><creatorcontrib>Assis, D. P.</creatorcontrib><creatorcontrib>Podevin, F.</creatorcontrib><creatorcontrib>Rehder, G. P.</creatorcontrib><creatorcontrib>Corrao, N.</creatorcontrib><creatorcontrib>Ferrari, P.</creatorcontrib><title>Modeling and Characterization of Slow-Wave Microstrip Lines on Metallic-Nanowire- Filled-Membrane Substrate</title><title>IEEE transactions on microwave theory and techniques</title><addtitle>TMTT</addtitle><description>In this paper, a physical model of the slow-wave (SW) microstrip lines based on a metallic-nanowire-filled-membrane substrate is presented for the first time. The model properly predicts the behavior of the SW transmission lines as shown by the experimental results. Two sets of transmission lines differing in oxide thickness with various widths were fabricated and characterized up to 70 GHz. The electrical model is valid for both oxide thicknesses and microstrips width. High-quality factors are obtained, above 40 from 30 GHz up to 70 GHz, paving the way for further designs of passive circuits, like power dividers or hybrid couplers, with good performance.</description><subject>Dielectric measurement</subject><subject>Dielectrics</subject><subject>Electromagnetism</subject><subject>Electronics</subject><subject>Engineering Sciences</subject><subject>Low-cost substrate</subject><subject>Micro and nanotechnologies</subject><subject>Microelectronics</subject><subject>Microstrip</subject><subject>microstrip devices</subject><subject>millimeter-wave (mmW) propagation</subject><subject>Nanowires</subject><subject>Power transmission lines</subject><subject>slow-wave (SW) structures</subject><subject>Substrates</subject><subject>Transmission line measurements</subject><issn>0018-9480</issn><issn>1557-9670</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1P3DAQhq0KpC4fP6DqxVJPPXgZ24kTH9GqC0gbOLCIo-XY42Ia4q2TBdFf30SLOI1m9LyvRg8h3zgsOQd9sW2226UAXiyFVIpD_YUseFlWTKsKjsgCgNdMFzV8JSfD8DytRQn1gvxpkscu9r-p7T1dPdls3Yg5_rNjTD1Ngd536Y092lekTXQ5DWOOO7qJPQ50AhocbddFx25tn95iRkbXsevQswZf2mx7pPf7dgrZEc_IcbDdgOcf85Q8rH9tV9dsc3d1s7rcMCcVjKwsQyt46aQIQkrvvBDeOvSFU-AFBtdaH0QZCq2F1KoFyz3WwktdoQ81yFPy89D7ZDuzy_HF5neTbDTXlxsz32ASJWQtXvnE_jiwu5z-7nEYzXPa5356z3AlgVeVLqqJ4gdqFjBkDJ-1HMzs38z-zezffPifMt8PmYiIn7zSCjgo-R_qvYII</recordid><startdate>20141201</startdate><enddate>20141201</enddate><creator>Serrano, A. L. C.</creator><creator>Franc, A.-L</creator><creator>Assis, D. P.</creator><creator>Podevin, F.</creator><creator>Rehder, G. P.</creator><creator>Corrao, N.</creator><creator>Ferrari, P.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-7655-2958</orcidid><orcidid>https://orcid.org/0000-0002-8477-5617</orcidid></search><sort><creationdate>20141201</creationdate><title>Modeling and Characterization of Slow-Wave Microstrip Lines on Metallic-Nanowire- Filled-Membrane Substrate</title><author>Serrano, A. L. C. ; Franc, A.-L ; Assis, D. P. ; Podevin, F. ; Rehder, G. P. ; Corrao, N. ; Ferrari, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-55fb215c32f233dcd22daced4c60d2efcbadf25f4992396b0a1de82d397edf803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Dielectric measurement</topic><topic>Dielectrics</topic><topic>Electromagnetism</topic><topic>Electronics</topic><topic>Engineering Sciences</topic><topic>Low-cost substrate</topic><topic>Micro and nanotechnologies</topic><topic>Microelectronics</topic><topic>Microstrip</topic><topic>microstrip devices</topic><topic>millimeter-wave (mmW) propagation</topic><topic>Nanowires</topic><topic>Power transmission lines</topic><topic>slow-wave (SW) structures</topic><topic>Substrates</topic><topic>Transmission line measurements</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Serrano, A. L. C.</creatorcontrib><creatorcontrib>Franc, A.-L</creatorcontrib><creatorcontrib>Assis, D. P.</creatorcontrib><creatorcontrib>Podevin, F.</creatorcontrib><creatorcontrib>Rehder, G. P.</creatorcontrib><creatorcontrib>Corrao, N.</creatorcontrib><creatorcontrib>Ferrari, P.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>IEEE transactions on microwave theory and techniques</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Serrano, A. L. C.</au><au>Franc, A.-L</au><au>Assis, D. P.</au><au>Podevin, F.</au><au>Rehder, G. P.</au><au>Corrao, N.</au><au>Ferrari, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling and Characterization of Slow-Wave Microstrip Lines on Metallic-Nanowire- Filled-Membrane Substrate</atitle><jtitle>IEEE transactions on microwave theory and techniques</jtitle><stitle>TMTT</stitle><date>2014-12-01</date><risdate>2014</risdate><volume>62</volume><issue>12</issue><spage>3249</spage><epage>3254</epage><pages>3249-3254</pages><issn>0018-9480</issn><eissn>1557-9670</eissn><coden>IETMAB</coden><abstract>In this paper, a physical model of the slow-wave (SW) microstrip lines based on a metallic-nanowire-filled-membrane substrate is presented for the first time. The model properly predicts the behavior of the SW transmission lines as shown by the experimental results. Two sets of transmission lines differing in oxide thickness with various widths were fabricated and characterized up to 70 GHz. The electrical model is valid for both oxide thicknesses and microstrips width. High-quality factors are obtained, above 40 from 30 GHz up to 70 GHz, paving the way for further designs of passive circuits, like power dividers or hybrid couplers, with good performance.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMTT.2014.2366108</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-7655-2958</orcidid><orcidid>https://orcid.org/0000-0002-8477-5617</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9480 |
ispartof | IEEE transactions on microwave theory and techniques, 2014-12, Vol.62 (12), p.3249-3254 |
issn | 0018-9480 1557-9670 |
language | eng |
recordid | cdi_ieee_primary_6960106 |
source | IEEE Electronic Library Online |
subjects | Dielectric measurement Dielectrics Electromagnetism Electronics Engineering Sciences Low-cost substrate Micro and nanotechnologies Microelectronics Microstrip microstrip devices millimeter-wave (mmW) propagation Nanowires Power transmission lines slow-wave (SW) structures Substrates Transmission line measurements |
title | Modeling and Characterization of Slow-Wave Microstrip Lines on Metallic-Nanowire- Filled-Membrane Substrate |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T09%3A44%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20and%20Characterization%20of%20Slow-Wave%20Microstrip%20Lines%20on%20Metallic-Nanowire-%20Filled-Membrane%20Substrate&rft.jtitle=IEEE%20transactions%20on%20microwave%20theory%20and%20techniques&rft.au=Serrano,%20A.%20L.%20C.&rft.date=2014-12-01&rft.volume=62&rft.issue=12&rft.spage=3249&rft.epage=3254&rft.pages=3249-3254&rft.issn=0018-9480&rft.eissn=1557-9670&rft.coden=IETMAB&rft_id=info:doi/10.1109/TMTT.2014.2366108&rft_dat=%3Cproquest_RIE%3E3516623021%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1630177947&rft_id=info:pmid/&rft_ieee_id=6960106&rfr_iscdi=true |