Arthur-Merlin games in Boolean decision trees

It is well known that probabilistic boolean decision trees cannot be much more powerful than deterministic ones. Motivated by a question if randomization can significantly speed up a nondeterministic computation via a boolean decision tree, we address structural properties of Arthur-Merlin games in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Raz, R., Tardos, G., Verbitsky, O., Vereshagin, N.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 67
container_issue
container_start_page 58
container_title
container_volume
creator Raz, R.
Tardos, G.
Verbitsky, O.
Vereshagin, N.
description It is well known that probabilistic boolean decision trees cannot be much more powerful than deterministic ones. Motivated by a question if randomization can significantly speed up a nondeterministic computation via a boolean decision tree, we address structural properties of Arthur-Merlin games in this model and prove some lower bounds. We consider two cases of interest, the first when the length of communication between the players is limited and the second if it is not. While in the first case we can carry over the relations between the corresponding Turing complexity classes, in the second case we observe in contrast with Turing complexity that a one round Merlin-Arthur protocol is as powerful as a general interactive proof system and, in particular, can simulate a one-round Arthur-Merlin protocol. Moreover, we show that sometimes a Merlin-Arthur protocol can be more efficient than an Arthur-Merlin protocol, and than a Merlin-Arthur protocol with limited communication. This is the case for a boolean function whose set of zeroes is a code with high minimum distance and a natural uniformity condition. Such functions provide an example when the Merlin-Arthur complexity is 1 with one-sided error /spl epsiv//spl isin/(2/3, 1), but at the same time the nondeterministic decision tree complexity is /spl Omega/(n). The latter should be contrasted with another fact we prove. Namely, if a function has Merlin-Arthur complexity 1 with one-sided error probability /spl epsiv//spl isin/(0, 2/3], then its nondeterministic complexity is bounded by a constant.
doi_str_mv 10.1109/CCC.1998.694591
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_694591</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>694591</ieee_id><sourcerecordid>694591</sourcerecordid><originalsourceid>FETCH-LOGICAL-i174t-e1e937b9d0443d3af4e252c2c31bb63e4de4e78af90836df67f988d8dc9212ef3</originalsourceid><addsrcrecordid>eNotj81KxDAYRYM_YBm7Flz1BVLzn3zLsegojLjR9ZA2XzTSaSWpC9_ewng392zugUvIDWct5wzuuq5rOYBrDSgN_IxUQltNnWLynNRgHXPcGSdBqwtSrQtJGddwRepSvtgapTkYqAjd5uXzJ9MXzGOamg9_xNKscD_PI_qpCTikkuapWTJiuSaX0Y8F6__ekPfHh7fuie5fd8_ddk8Tt2qhyBGk7SEwpWSQPioUWgxikLzvjUQVUKF1PgJz0oRobATnggsDCC4wyg25PXkTIh6-czr6_Hs4fZV_YwxEdQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Arthur-Merlin games in Boolean decision trees</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Raz, R. ; Tardos, G. ; Verbitsky, O. ; Vereshagin, N.</creator><creatorcontrib>Raz, R. ; Tardos, G. ; Verbitsky, O. ; Vereshagin, N.</creatorcontrib><description>It is well known that probabilistic boolean decision trees cannot be much more powerful than deterministic ones. Motivated by a question if randomization can significantly speed up a nondeterministic computation via a boolean decision tree, we address structural properties of Arthur-Merlin games in this model and prove some lower bounds. We consider two cases of interest, the first when the length of communication between the players is limited and the second if it is not. While in the first case we can carry over the relations between the corresponding Turing complexity classes, in the second case we observe in contrast with Turing complexity that a one round Merlin-Arthur protocol is as powerful as a general interactive proof system and, in particular, can simulate a one-round Arthur-Merlin protocol. Moreover, we show that sometimes a Merlin-Arthur protocol can be more efficient than an Arthur-Merlin protocol, and than a Merlin-Arthur protocol with limited communication. This is the case for a boolean function whose set of zeroes is a code with high minimum distance and a natural uniformity condition. Such functions provide an example when the Merlin-Arthur complexity is 1 with one-sided error /spl epsiv//spl isin/(2/3, 1), but at the same time the nondeterministic decision tree complexity is /spl Omega/(n). The latter should be contrasted with another fact we prove. Namely, if a function has Merlin-Arthur complexity 1 with one-sided error probability /spl epsiv//spl isin/(0, 2/3], then its nondeterministic complexity is bounded by a constant.</description><identifier>ISSN: 1093-0159</identifier><identifier>ISBN: 9780818683954</identifier><identifier>ISBN: 0818683953</identifier><identifier>EISSN: 2575-8403</identifier><identifier>DOI: 10.1109/CCC.1998.694591</identifier><language>eng</language><publisher>IEEE</publisher><subject>Boolean functions ; Computational efficiency ; Decision trees ; Error probability ; Information systems ; Logic ; Mathematics ; Protocols ; Radio access networks ; Veins</subject><ispartof>Proceedings. Thirteenth Annual IEEE Conference on Computational Complexity (Formerly: Structure in Complexity Theory Conference) (Cat. No.98CB36247), 1998, p.58-67</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/694591$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/694591$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Raz, R.</creatorcontrib><creatorcontrib>Tardos, G.</creatorcontrib><creatorcontrib>Verbitsky, O.</creatorcontrib><creatorcontrib>Vereshagin, N.</creatorcontrib><title>Arthur-Merlin games in Boolean decision trees</title><title>Proceedings. Thirteenth Annual IEEE Conference on Computational Complexity (Formerly: Structure in Complexity Theory Conference) (Cat. No.98CB36247)</title><addtitle>CCC</addtitle><description>It is well known that probabilistic boolean decision trees cannot be much more powerful than deterministic ones. Motivated by a question if randomization can significantly speed up a nondeterministic computation via a boolean decision tree, we address structural properties of Arthur-Merlin games in this model and prove some lower bounds. We consider two cases of interest, the first when the length of communication between the players is limited and the second if it is not. While in the first case we can carry over the relations between the corresponding Turing complexity classes, in the second case we observe in contrast with Turing complexity that a one round Merlin-Arthur protocol is as powerful as a general interactive proof system and, in particular, can simulate a one-round Arthur-Merlin protocol. Moreover, we show that sometimes a Merlin-Arthur protocol can be more efficient than an Arthur-Merlin protocol, and than a Merlin-Arthur protocol with limited communication. This is the case for a boolean function whose set of zeroes is a code with high minimum distance and a natural uniformity condition. Such functions provide an example when the Merlin-Arthur complexity is 1 with one-sided error /spl epsiv//spl isin/(2/3, 1), but at the same time the nondeterministic decision tree complexity is /spl Omega/(n). The latter should be contrasted with another fact we prove. Namely, if a function has Merlin-Arthur complexity 1 with one-sided error probability /spl epsiv//spl isin/(0, 2/3], then its nondeterministic complexity is bounded by a constant.</description><subject>Boolean functions</subject><subject>Computational efficiency</subject><subject>Decision trees</subject><subject>Error probability</subject><subject>Information systems</subject><subject>Logic</subject><subject>Mathematics</subject><subject>Protocols</subject><subject>Radio access networks</subject><subject>Veins</subject><issn>1093-0159</issn><issn>2575-8403</issn><isbn>9780818683954</isbn><isbn>0818683953</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1998</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj81KxDAYRYM_YBm7Flz1BVLzn3zLsegojLjR9ZA2XzTSaSWpC9_ewng392zugUvIDWct5wzuuq5rOYBrDSgN_IxUQltNnWLynNRgHXPcGSdBqwtSrQtJGddwRepSvtgapTkYqAjd5uXzJ9MXzGOamg9_xNKscD_PI_qpCTikkuapWTJiuSaX0Y8F6__ekPfHh7fuie5fd8_ddk8Tt2qhyBGk7SEwpWSQPioUWgxikLzvjUQVUKF1PgJz0oRobATnggsDCC4wyg25PXkTIh6-czr6_Hs4fZV_YwxEdQ</recordid><startdate>1998</startdate><enddate>1998</enddate><creator>Raz, R.</creator><creator>Tardos, G.</creator><creator>Verbitsky, O.</creator><creator>Vereshagin, N.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>1998</creationdate><title>Arthur-Merlin games in Boolean decision trees</title><author>Raz, R. ; Tardos, G. ; Verbitsky, O. ; Vereshagin, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i174t-e1e937b9d0443d3af4e252c2c31bb63e4de4e78af90836df67f988d8dc9212ef3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Boolean functions</topic><topic>Computational efficiency</topic><topic>Decision trees</topic><topic>Error probability</topic><topic>Information systems</topic><topic>Logic</topic><topic>Mathematics</topic><topic>Protocols</topic><topic>Radio access networks</topic><topic>Veins</topic><toplevel>online_resources</toplevel><creatorcontrib>Raz, R.</creatorcontrib><creatorcontrib>Tardos, G.</creatorcontrib><creatorcontrib>Verbitsky, O.</creatorcontrib><creatorcontrib>Vereshagin, N.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Raz, R.</au><au>Tardos, G.</au><au>Verbitsky, O.</au><au>Vereshagin, N.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Arthur-Merlin games in Boolean decision trees</atitle><btitle>Proceedings. Thirteenth Annual IEEE Conference on Computational Complexity (Formerly: Structure in Complexity Theory Conference) (Cat. No.98CB36247)</btitle><stitle>CCC</stitle><date>1998</date><risdate>1998</risdate><spage>58</spage><epage>67</epage><pages>58-67</pages><issn>1093-0159</issn><eissn>2575-8403</eissn><isbn>9780818683954</isbn><isbn>0818683953</isbn><abstract>It is well known that probabilistic boolean decision trees cannot be much more powerful than deterministic ones. Motivated by a question if randomization can significantly speed up a nondeterministic computation via a boolean decision tree, we address structural properties of Arthur-Merlin games in this model and prove some lower bounds. We consider two cases of interest, the first when the length of communication between the players is limited and the second if it is not. While in the first case we can carry over the relations between the corresponding Turing complexity classes, in the second case we observe in contrast with Turing complexity that a one round Merlin-Arthur protocol is as powerful as a general interactive proof system and, in particular, can simulate a one-round Arthur-Merlin protocol. Moreover, we show that sometimes a Merlin-Arthur protocol can be more efficient than an Arthur-Merlin protocol, and than a Merlin-Arthur protocol with limited communication. This is the case for a boolean function whose set of zeroes is a code with high minimum distance and a natural uniformity condition. Such functions provide an example when the Merlin-Arthur complexity is 1 with one-sided error /spl epsiv//spl isin/(2/3, 1), but at the same time the nondeterministic decision tree complexity is /spl Omega/(n). The latter should be contrasted with another fact we prove. Namely, if a function has Merlin-Arthur complexity 1 with one-sided error probability /spl epsiv//spl isin/(0, 2/3], then its nondeterministic complexity is bounded by a constant.</abstract><pub>IEEE</pub><doi>10.1109/CCC.1998.694591</doi><tpages>10</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1093-0159
ispartof Proceedings. Thirteenth Annual IEEE Conference on Computational Complexity (Formerly: Structure in Complexity Theory Conference) (Cat. No.98CB36247), 1998, p.58-67
issn 1093-0159
2575-8403
language eng
recordid cdi_ieee_primary_694591
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Boolean functions
Computational efficiency
Decision trees
Error probability
Information systems
Logic
Mathematics
Protocols
Radio access networks
Veins
title Arthur-Merlin games in Boolean decision trees
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T01%3A25%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Arthur-Merlin%20games%20in%20Boolean%20decision%20trees&rft.btitle=Proceedings.%20Thirteenth%20Annual%20IEEE%20Conference%20on%20Computational%20Complexity%20(Formerly:%20Structure%20in%20Complexity%20Theory%20Conference)%20(Cat.%20No.98CB36247)&rft.au=Raz,%20R.&rft.date=1998&rft.spage=58&rft.epage=67&rft.pages=58-67&rft.issn=1093-0159&rft.eissn=2575-8403&rft.isbn=9780818683954&rft.isbn_list=0818683953&rft_id=info:doi/10.1109/CCC.1998.694591&rft_dat=%3Cieee_6IE%3E694591%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=694591&rfr_iscdi=true