From Local Geometry to Global Structure: Learning Latent Subspace for Low-resolution Face Image Recognition

In this letter, we propose a novel approach for learning coupled mappings to improve the performance of low-resolution (LR) face image recognition. The coupled mappings aim to project the LR probe images and high-resolution (HR) gallery images into a unified latent subspace, which is efficient to me...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE signal processing letters 2015-05, Vol.22 (5), p.554-558
Hauptverfasser: Shi, Jingang, Qi, Chun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 558
container_issue 5
container_start_page 554
container_title IEEE signal processing letters
container_volume 22
creator Shi, Jingang
Qi, Chun
description In this letter, we propose a novel approach for learning coupled mappings to improve the performance of low-resolution (LR) face image recognition. The coupled mappings aim to project the LR probe images and high-resolution (HR) gallery images into a unified latent subspace, which is efficient to measure the similarity of face images with different resolutions. In the training phase, we first construct local optimization for each training sample according to the relationship of neighboring data points. The local optimization aims to: (1) ensure the consistency for each LR face image and corresponding HR one; (2) model the intrinsic geometric structure between each given sample and its neighbors; and (3) preserve the discriminative information across different subjects. We finally incorporate the local optimizations together for building the global structure. The coupled mappings can be learned by solving a standard eigen-decomposition problem, which avoids the small-sample-size problem. Experimental results demonstrate the effectiveness of the proposed method on public face databases.
doi_str_mv 10.1109/LSP.2014.2364262
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_6932427</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6932427</ieee_id><sourcerecordid>1642240630</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-7bea784637f038d2793d4868daac68c8a9fde727df1179cef638f41b627cb6b53</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhoMoWKt3wcuCFy-p-5HshzcRWwsBxeo5bDaTkppk6-4G6b93S4sHT7Pz8sww-yTJNcEzQrC6L1ZvM4pJNqOMZ5TTk2RC8lymsSWn8Y0FTpXC8jy58H6DMZZE5pPka-5sjwprdIcWYHsIboeCRYvOVjFaBTeaMDp4QAVoN7TDGhU6wBDQaqz8VhtAjXVxwU_qwNtuDK0d0HyfL3u9BvQOxq6Hdh9fJmeN7jxcHes0-Zw_fzy9pMXrYvn0WKSG0SykogItZMaZaDCTNRWK1ZnkstbacGmkVk0Ngoq6IUQoAw1nsslIxakwFa9yNk3uDnu3zn6P4EPZt95A1-kB7OhLEgXRDHOGI3r7D93Y0Q3xukgRpSjDlEYKHyjjrPcOmnLr2l67XUlwubdfRvvl3n55tB9Hbg4jLQD84VzFH1LBfgF3TIBf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1619923022</pqid></control><display><type>article</type><title>From Local Geometry to Global Structure: Learning Latent Subspace for Low-resolution Face Image Recognition</title><source>IEEE/IET Electronic Library</source><creator>Shi, Jingang ; Qi, Chun</creator><creatorcontrib>Shi, Jingang ; Qi, Chun</creatorcontrib><description>In this letter, we propose a novel approach for learning coupled mappings to improve the performance of low-resolution (LR) face image recognition. The coupled mappings aim to project the LR probe images and high-resolution (HR) gallery images into a unified latent subspace, which is efficient to measure the similarity of face images with different resolutions. In the training phase, we first construct local optimization for each training sample according to the relationship of neighboring data points. The local optimization aims to: (1) ensure the consistency for each LR face image and corresponding HR one; (2) model the intrinsic geometric structure between each given sample and its neighbors; and (3) preserve the discriminative information across different subjects. We finally incorporate the local optimizations together for building the global structure. The coupled mappings can be learned by solving a standard eigen-decomposition problem, which avoids the small-sample-size problem. Experimental results demonstrate the effectiveness of the proposed method on public face databases.</description><identifier>ISSN: 1070-9908</identifier><identifier>EISSN: 1558-2361</identifier><identifier>DOI: 10.1109/LSP.2014.2364262</identifier><identifier>CODEN: ISPLEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Construction ; Coupled mappings ; Face ; Face recognition ; Geometry ; Image resolution ; Joining ; Local optimization ; low-resolution ; Mapping ; Object recognition ; Optimization ; Signal processing algorithms ; subspace learning ; Subspaces ; Training</subject><ispartof>IEEE signal processing letters, 2015-05, Vol.22 (5), p.554-558</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) May 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c324t-7bea784637f038d2793d4868daac68c8a9fde727df1179cef638f41b627cb6b53</citedby><cites>FETCH-LOGICAL-c324t-7bea784637f038d2793d4868daac68c8a9fde727df1179cef638f41b627cb6b53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6932427$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6932427$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Shi, Jingang</creatorcontrib><creatorcontrib>Qi, Chun</creatorcontrib><title>From Local Geometry to Global Structure: Learning Latent Subspace for Low-resolution Face Image Recognition</title><title>IEEE signal processing letters</title><addtitle>LSP</addtitle><description>In this letter, we propose a novel approach for learning coupled mappings to improve the performance of low-resolution (LR) face image recognition. The coupled mappings aim to project the LR probe images and high-resolution (HR) gallery images into a unified latent subspace, which is efficient to measure the similarity of face images with different resolutions. In the training phase, we first construct local optimization for each training sample according to the relationship of neighboring data points. The local optimization aims to: (1) ensure the consistency for each LR face image and corresponding HR one; (2) model the intrinsic geometric structure between each given sample and its neighbors; and (3) preserve the discriminative information across different subjects. We finally incorporate the local optimizations together for building the global structure. The coupled mappings can be learned by solving a standard eigen-decomposition problem, which avoids the small-sample-size problem. Experimental results demonstrate the effectiveness of the proposed method on public face databases.</description><subject>Construction</subject><subject>Coupled mappings</subject><subject>Face</subject><subject>Face recognition</subject><subject>Geometry</subject><subject>Image resolution</subject><subject>Joining</subject><subject>Local optimization</subject><subject>low-resolution</subject><subject>Mapping</subject><subject>Object recognition</subject><subject>Optimization</subject><subject>Signal processing algorithms</subject><subject>subspace learning</subject><subject>Subspaces</subject><subject>Training</subject><issn>1070-9908</issn><issn>1558-2361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1Lw0AQhoMoWKt3wcuCFy-p-5HshzcRWwsBxeo5bDaTkppk6-4G6b93S4sHT7Pz8sww-yTJNcEzQrC6L1ZvM4pJNqOMZ5TTk2RC8lymsSWn8Y0FTpXC8jy58H6DMZZE5pPka-5sjwprdIcWYHsIboeCRYvOVjFaBTeaMDp4QAVoN7TDGhU6wBDQaqz8VhtAjXVxwU_qwNtuDK0d0HyfL3u9BvQOxq6Hdh9fJmeN7jxcHes0-Zw_fzy9pMXrYvn0WKSG0SykogItZMaZaDCTNRWK1ZnkstbacGmkVk0Ngoq6IUQoAw1nsslIxakwFa9yNk3uDnu3zn6P4EPZt95A1-kB7OhLEgXRDHOGI3r7D93Y0Q3xukgRpSjDlEYKHyjjrPcOmnLr2l67XUlwubdfRvvl3n55tB9Hbg4jLQD84VzFH1LBfgF3TIBf</recordid><startdate>20150501</startdate><enddate>20150501</enddate><creator>Shi, Jingang</creator><creator>Qi, Chun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20150501</creationdate><title>From Local Geometry to Global Structure: Learning Latent Subspace for Low-resolution Face Image Recognition</title><author>Shi, Jingang ; Qi, Chun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-7bea784637f038d2793d4868daac68c8a9fde727df1179cef638f41b627cb6b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Construction</topic><topic>Coupled mappings</topic><topic>Face</topic><topic>Face recognition</topic><topic>Geometry</topic><topic>Image resolution</topic><topic>Joining</topic><topic>Local optimization</topic><topic>low-resolution</topic><topic>Mapping</topic><topic>Object recognition</topic><topic>Optimization</topic><topic>Signal processing algorithms</topic><topic>subspace learning</topic><topic>Subspaces</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shi, Jingang</creatorcontrib><creatorcontrib>Qi, Chun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE signal processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shi, Jingang</au><au>Qi, Chun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>From Local Geometry to Global Structure: Learning Latent Subspace for Low-resolution Face Image Recognition</atitle><jtitle>IEEE signal processing letters</jtitle><stitle>LSP</stitle><date>2015-05-01</date><risdate>2015</risdate><volume>22</volume><issue>5</issue><spage>554</spage><epage>558</epage><pages>554-558</pages><issn>1070-9908</issn><eissn>1558-2361</eissn><coden>ISPLEM</coden><abstract>In this letter, we propose a novel approach for learning coupled mappings to improve the performance of low-resolution (LR) face image recognition. The coupled mappings aim to project the LR probe images and high-resolution (HR) gallery images into a unified latent subspace, which is efficient to measure the similarity of face images with different resolutions. In the training phase, we first construct local optimization for each training sample according to the relationship of neighboring data points. The local optimization aims to: (1) ensure the consistency for each LR face image and corresponding HR one; (2) model the intrinsic geometric structure between each given sample and its neighbors; and (3) preserve the discriminative information across different subjects. We finally incorporate the local optimizations together for building the global structure. The coupled mappings can be learned by solving a standard eigen-decomposition problem, which avoids the small-sample-size problem. Experimental results demonstrate the effectiveness of the proposed method on public face databases.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LSP.2014.2364262</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1070-9908
ispartof IEEE signal processing letters, 2015-05, Vol.22 (5), p.554-558
issn 1070-9908
1558-2361
language eng
recordid cdi_ieee_primary_6932427
source IEEE/IET Electronic Library
subjects Construction
Coupled mappings
Face
Face recognition
Geometry
Image resolution
Joining
Local optimization
low-resolution
Mapping
Object recognition
Optimization
Signal processing algorithms
subspace learning
Subspaces
Training
title From Local Geometry to Global Structure: Learning Latent Subspace for Low-resolution Face Image Recognition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T10%3A41%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=From%20Local%20Geometry%20to%20Global%20Structure:%20Learning%20Latent%20Subspace%20for%20Low-resolution%20Face%20Image%20Recognition&rft.jtitle=IEEE%20signal%20processing%20letters&rft.au=Shi,%20Jingang&rft.date=2015-05-01&rft.volume=22&rft.issue=5&rft.spage=554&rft.epage=558&rft.pages=554-558&rft.issn=1070-9908&rft.eissn=1558-2361&rft.coden=ISPLEM&rft_id=info:doi/10.1109/LSP.2014.2364262&rft_dat=%3Cproquest_RIE%3E1642240630%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1619923022&rft_id=info:pmid/&rft_ieee_id=6932427&rfr_iscdi=true