From Local Geometry to Global Structure: Learning Latent Subspace for Low-resolution Face Image Recognition
In this letter, we propose a novel approach for learning coupled mappings to improve the performance of low-resolution (LR) face image recognition. The coupled mappings aim to project the LR probe images and high-resolution (HR) gallery images into a unified latent subspace, which is efficient to me...
Gespeichert in:
Veröffentlicht in: | IEEE signal processing letters 2015-05, Vol.22 (5), p.554-558 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 558 |
---|---|
container_issue | 5 |
container_start_page | 554 |
container_title | IEEE signal processing letters |
container_volume | 22 |
creator | Shi, Jingang Qi, Chun |
description | In this letter, we propose a novel approach for learning coupled mappings to improve the performance of low-resolution (LR) face image recognition. The coupled mappings aim to project the LR probe images and high-resolution (HR) gallery images into a unified latent subspace, which is efficient to measure the similarity of face images with different resolutions. In the training phase, we first construct local optimization for each training sample according to the relationship of neighboring data points. The local optimization aims to: (1) ensure the consistency for each LR face image and corresponding HR one; (2) model the intrinsic geometric structure between each given sample and its neighbors; and (3) preserve the discriminative information across different subjects. We finally incorporate the local optimizations together for building the global structure. The coupled mappings can be learned by solving a standard eigen-decomposition problem, which avoids the small-sample-size problem. Experimental results demonstrate the effectiveness of the proposed method on public face databases. |
doi_str_mv | 10.1109/LSP.2014.2364262 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_6932427</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6932427</ieee_id><sourcerecordid>1642240630</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-7bea784637f038d2793d4868daac68c8a9fde727df1179cef638f41b627cb6b53</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhoMoWKt3wcuCFy-p-5HshzcRWwsBxeo5bDaTkppk6-4G6b93S4sHT7Pz8sww-yTJNcEzQrC6L1ZvM4pJNqOMZ5TTk2RC8lymsSWn8Y0FTpXC8jy58H6DMZZE5pPka-5sjwprdIcWYHsIboeCRYvOVjFaBTeaMDp4QAVoN7TDGhU6wBDQaqz8VhtAjXVxwU_qwNtuDK0d0HyfL3u9BvQOxq6Hdh9fJmeN7jxcHes0-Zw_fzy9pMXrYvn0WKSG0SykogItZMaZaDCTNRWK1ZnkstbacGmkVk0Ngoq6IUQoAw1nsslIxakwFa9yNk3uDnu3zn6P4EPZt95A1-kB7OhLEgXRDHOGI3r7D93Y0Q3xukgRpSjDlEYKHyjjrPcOmnLr2l67XUlwubdfRvvl3n55tB9Hbg4jLQD84VzFH1LBfgF3TIBf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1619923022</pqid></control><display><type>article</type><title>From Local Geometry to Global Structure: Learning Latent Subspace for Low-resolution Face Image Recognition</title><source>IEEE/IET Electronic Library</source><creator>Shi, Jingang ; Qi, Chun</creator><creatorcontrib>Shi, Jingang ; Qi, Chun</creatorcontrib><description>In this letter, we propose a novel approach for learning coupled mappings to improve the performance of low-resolution (LR) face image recognition. The coupled mappings aim to project the LR probe images and high-resolution (HR) gallery images into a unified latent subspace, which is efficient to measure the similarity of face images with different resolutions. In the training phase, we first construct local optimization for each training sample according to the relationship of neighboring data points. The local optimization aims to: (1) ensure the consistency for each LR face image and corresponding HR one; (2) model the intrinsic geometric structure between each given sample and its neighbors; and (3) preserve the discriminative information across different subjects. We finally incorporate the local optimizations together for building the global structure. The coupled mappings can be learned by solving a standard eigen-decomposition problem, which avoids the small-sample-size problem. Experimental results demonstrate the effectiveness of the proposed method on public face databases.</description><identifier>ISSN: 1070-9908</identifier><identifier>EISSN: 1558-2361</identifier><identifier>DOI: 10.1109/LSP.2014.2364262</identifier><identifier>CODEN: ISPLEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Construction ; Coupled mappings ; Face ; Face recognition ; Geometry ; Image resolution ; Joining ; Local optimization ; low-resolution ; Mapping ; Object recognition ; Optimization ; Signal processing algorithms ; subspace learning ; Subspaces ; Training</subject><ispartof>IEEE signal processing letters, 2015-05, Vol.22 (5), p.554-558</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) May 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c324t-7bea784637f038d2793d4868daac68c8a9fde727df1179cef638f41b627cb6b53</citedby><cites>FETCH-LOGICAL-c324t-7bea784637f038d2793d4868daac68c8a9fde727df1179cef638f41b627cb6b53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6932427$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6932427$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Shi, Jingang</creatorcontrib><creatorcontrib>Qi, Chun</creatorcontrib><title>From Local Geometry to Global Structure: Learning Latent Subspace for Low-resolution Face Image Recognition</title><title>IEEE signal processing letters</title><addtitle>LSP</addtitle><description>In this letter, we propose a novel approach for learning coupled mappings to improve the performance of low-resolution (LR) face image recognition. The coupled mappings aim to project the LR probe images and high-resolution (HR) gallery images into a unified latent subspace, which is efficient to measure the similarity of face images with different resolutions. In the training phase, we first construct local optimization for each training sample according to the relationship of neighboring data points. The local optimization aims to: (1) ensure the consistency for each LR face image and corresponding HR one; (2) model the intrinsic geometric structure between each given sample and its neighbors; and (3) preserve the discriminative information across different subjects. We finally incorporate the local optimizations together for building the global structure. The coupled mappings can be learned by solving a standard eigen-decomposition problem, which avoids the small-sample-size problem. Experimental results demonstrate the effectiveness of the proposed method on public face databases.</description><subject>Construction</subject><subject>Coupled mappings</subject><subject>Face</subject><subject>Face recognition</subject><subject>Geometry</subject><subject>Image resolution</subject><subject>Joining</subject><subject>Local optimization</subject><subject>low-resolution</subject><subject>Mapping</subject><subject>Object recognition</subject><subject>Optimization</subject><subject>Signal processing algorithms</subject><subject>subspace learning</subject><subject>Subspaces</subject><subject>Training</subject><issn>1070-9908</issn><issn>1558-2361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1Lw0AQhoMoWKt3wcuCFy-p-5HshzcRWwsBxeo5bDaTkppk6-4G6b93S4sHT7Pz8sww-yTJNcEzQrC6L1ZvM4pJNqOMZ5TTk2RC8lymsSWn8Y0FTpXC8jy58H6DMZZE5pPka-5sjwprdIcWYHsIboeCRYvOVjFaBTeaMDp4QAVoN7TDGhU6wBDQaqz8VhtAjXVxwU_qwNtuDK0d0HyfL3u9BvQOxq6Hdh9fJmeN7jxcHes0-Zw_fzy9pMXrYvn0WKSG0SykogItZMaZaDCTNRWK1ZnkstbacGmkVk0Ngoq6IUQoAw1nsslIxakwFa9yNk3uDnu3zn6P4EPZt95A1-kB7OhLEgXRDHOGI3r7D93Y0Q3xukgRpSjDlEYKHyjjrPcOmnLr2l67XUlwubdfRvvl3n55tB9Hbg4jLQD84VzFH1LBfgF3TIBf</recordid><startdate>20150501</startdate><enddate>20150501</enddate><creator>Shi, Jingang</creator><creator>Qi, Chun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20150501</creationdate><title>From Local Geometry to Global Structure: Learning Latent Subspace for Low-resolution Face Image Recognition</title><author>Shi, Jingang ; Qi, Chun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-7bea784637f038d2793d4868daac68c8a9fde727df1179cef638f41b627cb6b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Construction</topic><topic>Coupled mappings</topic><topic>Face</topic><topic>Face recognition</topic><topic>Geometry</topic><topic>Image resolution</topic><topic>Joining</topic><topic>Local optimization</topic><topic>low-resolution</topic><topic>Mapping</topic><topic>Object recognition</topic><topic>Optimization</topic><topic>Signal processing algorithms</topic><topic>subspace learning</topic><topic>Subspaces</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shi, Jingang</creatorcontrib><creatorcontrib>Qi, Chun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE signal processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shi, Jingang</au><au>Qi, Chun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>From Local Geometry to Global Structure: Learning Latent Subspace for Low-resolution Face Image Recognition</atitle><jtitle>IEEE signal processing letters</jtitle><stitle>LSP</stitle><date>2015-05-01</date><risdate>2015</risdate><volume>22</volume><issue>5</issue><spage>554</spage><epage>558</epage><pages>554-558</pages><issn>1070-9908</issn><eissn>1558-2361</eissn><coden>ISPLEM</coden><abstract>In this letter, we propose a novel approach for learning coupled mappings to improve the performance of low-resolution (LR) face image recognition. The coupled mappings aim to project the LR probe images and high-resolution (HR) gallery images into a unified latent subspace, which is efficient to measure the similarity of face images with different resolutions. In the training phase, we first construct local optimization for each training sample according to the relationship of neighboring data points. The local optimization aims to: (1) ensure the consistency for each LR face image and corresponding HR one; (2) model the intrinsic geometric structure between each given sample and its neighbors; and (3) preserve the discriminative information across different subjects. We finally incorporate the local optimizations together for building the global structure. The coupled mappings can be learned by solving a standard eigen-decomposition problem, which avoids the small-sample-size problem. Experimental results demonstrate the effectiveness of the proposed method on public face databases.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LSP.2014.2364262</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1070-9908 |
ispartof | IEEE signal processing letters, 2015-05, Vol.22 (5), p.554-558 |
issn | 1070-9908 1558-2361 |
language | eng |
recordid | cdi_ieee_primary_6932427 |
source | IEEE/IET Electronic Library |
subjects | Construction Coupled mappings Face Face recognition Geometry Image resolution Joining Local optimization low-resolution Mapping Object recognition Optimization Signal processing algorithms subspace learning Subspaces Training |
title | From Local Geometry to Global Structure: Learning Latent Subspace for Low-resolution Face Image Recognition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T10%3A41%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=From%20Local%20Geometry%20to%20Global%20Structure:%20Learning%20Latent%20Subspace%20for%20Low-resolution%20Face%20Image%20Recognition&rft.jtitle=IEEE%20signal%20processing%20letters&rft.au=Shi,%20Jingang&rft.date=2015-05-01&rft.volume=22&rft.issue=5&rft.spage=554&rft.epage=558&rft.pages=554-558&rft.issn=1070-9908&rft.eissn=1558-2361&rft.coden=ISPLEM&rft_id=info:doi/10.1109/LSP.2014.2364262&rft_dat=%3Cproquest_RIE%3E1642240630%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1619923022&rft_id=info:pmid/&rft_ieee_id=6932427&rfr_iscdi=true |