Patient-Specific Biomechanical Model for the Prediction of Lung Motion From 4-D CT Images

This paper presents an approach to predict the deformation of the lungs and surrounding organs during respiration. The framework incorporates a computational model of the respiratory system, which comprises an anatomical model extracted from computed tomography (CT) images at end-expiration (EE), an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on medical imaging 2015-02, Vol.34 (2), p.599-607
Hauptverfasser: Fuerst, Bernhard, Mansi, Tommaso, Carnis, Francois, Salzle, Martin, Jingdan Zhang, Declerck, Jerome, Boettger, Thomas, Bayouth, John, Navab, Nassir, Kamen, Ali
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 607
container_issue 2
container_start_page 599
container_title IEEE transactions on medical imaging
container_volume 34
creator Fuerst, Bernhard
Mansi, Tommaso
Carnis, Francois
Salzle, Martin
Jingdan Zhang
Declerck, Jerome
Boettger, Thomas
Bayouth, John
Navab, Nassir
Kamen, Ali
description This paper presents an approach to predict the deformation of the lungs and surrounding organs during respiration. The framework incorporates a computational model of the respiratory system, which comprises an anatomical model extracted from computed tomography (CT) images at end-expiration (EE), and a biomechanical model of the respiratory physiology, including the material behavior and interactions between organs. A personalization step is performed to automatically estimate patient-specific thoracic pressure, which drives the biomechanical model. The zone-wise pressure values are obtained by using a trust-region optimizer, where the estimated motion is compared to CT images at end-inspiration (EI). A detailed convergence analysis in terms of mesh resolution, time stepping and number of pressure zones on the surface of the thoracic cavity is carried out. The method is then tested on five public datasets. Results show that the model is able to predict the respiratory motion with an average landmark error of 3.40 ±1.0 mm over the entire respiratory cycle. The estimated 3-D lung motion may constitute as an advanced 3-D surrogate for more accurate medical image reconstruction and patient respiratory analysis.
doi_str_mv 10.1109/TMI.2014.2363611
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_6926856</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6926856</ieee_id><sourcerecordid>1652456702</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-b95340b346bb168d4665daedf0b395ddaf326f65d314a8fe1083e9d9e65bee0d3</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRbK3eBUH26CV1P7Kb5KjVaqHFghX0FDbZ2XYlydZscvDfu7XV0zAzzzsMD0KXlIwpJdntajEbM0LjMeOSS0qP0JAKkUZMxO_HaEhYkkaESDZAZ95_kkAKkp2iARM85olIhuhjqToLTRe9bqG0xpb43roayo1qbKkqvHAaKmxci7sN4GUL2paddQ12Bs_7Zh2A33bauhrH0QOerPCsVmvw5-jEqMrDxaGO0Nv0cTV5juYvT7PJ3TwqeSq6qMjCL6TgsSwKKlMdSym0Am3CLBNaK8OZNGHGaaxSA5SkHDKdgRQFANF8hG72d7et--rBd3ltfQlVpRpwvc-pFCwWMiEsoGSPlq3zvgWTb1tbq_Y7pyTfCc2D0HwnND8IDZHrw_W-qEH_B_4MBuBqD1gA-F_LjMlUSP4DZ8h4oQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1652456702</pqid></control><display><type>article</type><title>Patient-Specific Biomechanical Model for the Prediction of Lung Motion From 4-D CT Images</title><source>IEEE Electronic Library (IEL)</source><creator>Fuerst, Bernhard ; Mansi, Tommaso ; Carnis, Francois ; Salzle, Martin ; Jingdan Zhang ; Declerck, Jerome ; Boettger, Thomas ; Bayouth, John ; Navab, Nassir ; Kamen, Ali</creator><creatorcontrib>Fuerst, Bernhard ; Mansi, Tommaso ; Carnis, Francois ; Salzle, Martin ; Jingdan Zhang ; Declerck, Jerome ; Boettger, Thomas ; Bayouth, John ; Navab, Nassir ; Kamen, Ali</creatorcontrib><description>This paper presents an approach to predict the deformation of the lungs and surrounding organs during respiration. The framework incorporates a computational model of the respiratory system, which comprises an anatomical model extracted from computed tomography (CT) images at end-expiration (EE), and a biomechanical model of the respiratory physiology, including the material behavior and interactions between organs. A personalization step is performed to automatically estimate patient-specific thoracic pressure, which drives the biomechanical model. The zone-wise pressure values are obtained by using a trust-region optimizer, where the estimated motion is compared to CT images at end-inspiration (EI). A detailed convergence analysis in terms of mesh resolution, time stepping and number of pressure zones on the surface of the thoracic cavity is carried out. The method is then tested on five public datasets. Results show that the model is able to predict the respiratory motion with an average landmark error of 3.40 ±1.0 mm over the entire respiratory cycle. The estimated 3-D lung motion may constitute as an advanced 3-D surrogate for more accurate medical image reconstruction and patient respiratory analysis.</description><identifier>ISSN: 0278-0062</identifier><identifier>EISSN: 1558-254X</identifier><identifier>DOI: 10.1109/TMI.2014.2363611</identifier><identifier>PMID: 25343757</identifier><identifier>CODEN: ITMID4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Biological system modeling ; Biomechanical modeling ; Biomechanical Phenomena - physiology ; Biomechanics ; Computational modeling ; Computed tomography ; Computer Simulation ; Deformable models ; Four-Dimensional Computed Tomography - methods ; Humans ; Image Processing, Computer-Assisted - methods ; lung ; Lung - anatomy &amp; histology ; Lung - physiology ; Lungs ; Models, Biological ; motion prediction ; Movement ; personalization ; Precision Medicine - methods ; Respiration ; respiratory motion ; Thorax</subject><ispartof>IEEE transactions on medical imaging, 2015-02, Vol.34 (2), p.599-607</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-b95340b346bb168d4665daedf0b395ddaf326f65d314a8fe1083e9d9e65bee0d3</citedby><cites>FETCH-LOGICAL-c385t-b95340b346bb168d4665daedf0b395ddaf326f65d314a8fe1083e9d9e65bee0d3</cites><orcidid>0000-0001-7439-8312</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6926856$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6926856$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25343757$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fuerst, Bernhard</creatorcontrib><creatorcontrib>Mansi, Tommaso</creatorcontrib><creatorcontrib>Carnis, Francois</creatorcontrib><creatorcontrib>Salzle, Martin</creatorcontrib><creatorcontrib>Jingdan Zhang</creatorcontrib><creatorcontrib>Declerck, Jerome</creatorcontrib><creatorcontrib>Boettger, Thomas</creatorcontrib><creatorcontrib>Bayouth, John</creatorcontrib><creatorcontrib>Navab, Nassir</creatorcontrib><creatorcontrib>Kamen, Ali</creatorcontrib><title>Patient-Specific Biomechanical Model for the Prediction of Lung Motion From 4-D CT Images</title><title>IEEE transactions on medical imaging</title><addtitle>TMI</addtitle><addtitle>IEEE Trans Med Imaging</addtitle><description>This paper presents an approach to predict the deformation of the lungs and surrounding organs during respiration. The framework incorporates a computational model of the respiratory system, which comprises an anatomical model extracted from computed tomography (CT) images at end-expiration (EE), and a biomechanical model of the respiratory physiology, including the material behavior and interactions between organs. A personalization step is performed to automatically estimate patient-specific thoracic pressure, which drives the biomechanical model. The zone-wise pressure values are obtained by using a trust-region optimizer, where the estimated motion is compared to CT images at end-inspiration (EI). A detailed convergence analysis in terms of mesh resolution, time stepping and number of pressure zones on the surface of the thoracic cavity is carried out. The method is then tested on five public datasets. Results show that the model is able to predict the respiratory motion with an average landmark error of 3.40 ±1.0 mm over the entire respiratory cycle. The estimated 3-D lung motion may constitute as an advanced 3-D surrogate for more accurate medical image reconstruction and patient respiratory analysis.</description><subject>Biological system modeling</subject><subject>Biomechanical modeling</subject><subject>Biomechanical Phenomena - physiology</subject><subject>Biomechanics</subject><subject>Computational modeling</subject><subject>Computed tomography</subject><subject>Computer Simulation</subject><subject>Deformable models</subject><subject>Four-Dimensional Computed Tomography - methods</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>lung</subject><subject>Lung - anatomy &amp; histology</subject><subject>Lung - physiology</subject><subject>Lungs</subject><subject>Models, Biological</subject><subject>motion prediction</subject><subject>Movement</subject><subject>personalization</subject><subject>Precision Medicine - methods</subject><subject>Respiration</subject><subject>respiratory motion</subject><subject>Thorax</subject><issn>0278-0062</issn><issn>1558-254X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNo9kE1Lw0AQhhdRbK3eBUH26CV1P7Kb5KjVaqHFghX0FDbZ2XYlydZscvDfu7XV0zAzzzsMD0KXlIwpJdntajEbM0LjMeOSS0qP0JAKkUZMxO_HaEhYkkaESDZAZ95_kkAKkp2iARM85olIhuhjqToLTRe9bqG0xpb43roayo1qbKkqvHAaKmxci7sN4GUL2paddQ12Bs_7Zh2A33bauhrH0QOerPCsVmvw5-jEqMrDxaGO0Nv0cTV5juYvT7PJ3TwqeSq6qMjCL6TgsSwKKlMdSym0Am3CLBNaK8OZNGHGaaxSA5SkHDKdgRQFANF8hG72d7et--rBd3ltfQlVpRpwvc-pFCwWMiEsoGSPlq3zvgWTb1tbq_Y7pyTfCc2D0HwnND8IDZHrw_W-qEH_B_4MBuBqD1gA-F_LjMlUSP4DZ8h4oQ</recordid><startdate>201502</startdate><enddate>201502</enddate><creator>Fuerst, Bernhard</creator><creator>Mansi, Tommaso</creator><creator>Carnis, Francois</creator><creator>Salzle, Martin</creator><creator>Jingdan Zhang</creator><creator>Declerck, Jerome</creator><creator>Boettger, Thomas</creator><creator>Bayouth, John</creator><creator>Navab, Nassir</creator><creator>Kamen, Ali</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7439-8312</orcidid></search><sort><creationdate>201502</creationdate><title>Patient-Specific Biomechanical Model for the Prediction of Lung Motion From 4-D CT Images</title><author>Fuerst, Bernhard ; Mansi, Tommaso ; Carnis, Francois ; Salzle, Martin ; Jingdan Zhang ; Declerck, Jerome ; Boettger, Thomas ; Bayouth, John ; Navab, Nassir ; Kamen, Ali</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-b95340b346bb168d4665daedf0b395ddaf326f65d314a8fe1083e9d9e65bee0d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Biological system modeling</topic><topic>Biomechanical modeling</topic><topic>Biomechanical Phenomena - physiology</topic><topic>Biomechanics</topic><topic>Computational modeling</topic><topic>Computed tomography</topic><topic>Computer Simulation</topic><topic>Deformable models</topic><topic>Four-Dimensional Computed Tomography - methods</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>lung</topic><topic>Lung - anatomy &amp; histology</topic><topic>Lung - physiology</topic><topic>Lungs</topic><topic>Models, Biological</topic><topic>motion prediction</topic><topic>Movement</topic><topic>personalization</topic><topic>Precision Medicine - methods</topic><topic>Respiration</topic><topic>respiratory motion</topic><topic>Thorax</topic><toplevel>online_resources</toplevel><creatorcontrib>Fuerst, Bernhard</creatorcontrib><creatorcontrib>Mansi, Tommaso</creatorcontrib><creatorcontrib>Carnis, Francois</creatorcontrib><creatorcontrib>Salzle, Martin</creatorcontrib><creatorcontrib>Jingdan Zhang</creatorcontrib><creatorcontrib>Declerck, Jerome</creatorcontrib><creatorcontrib>Boettger, Thomas</creatorcontrib><creatorcontrib>Bayouth, John</creatorcontrib><creatorcontrib>Navab, Nassir</creatorcontrib><creatorcontrib>Kamen, Ali</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on medical imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fuerst, Bernhard</au><au>Mansi, Tommaso</au><au>Carnis, Francois</au><au>Salzle, Martin</au><au>Jingdan Zhang</au><au>Declerck, Jerome</au><au>Boettger, Thomas</au><au>Bayouth, John</au><au>Navab, Nassir</au><au>Kamen, Ali</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Patient-Specific Biomechanical Model for the Prediction of Lung Motion From 4-D CT Images</atitle><jtitle>IEEE transactions on medical imaging</jtitle><stitle>TMI</stitle><addtitle>IEEE Trans Med Imaging</addtitle><date>2015-02</date><risdate>2015</risdate><volume>34</volume><issue>2</issue><spage>599</spage><epage>607</epage><pages>599-607</pages><issn>0278-0062</issn><eissn>1558-254X</eissn><coden>ITMID4</coden><abstract>This paper presents an approach to predict the deformation of the lungs and surrounding organs during respiration. The framework incorporates a computational model of the respiratory system, which comprises an anatomical model extracted from computed tomography (CT) images at end-expiration (EE), and a biomechanical model of the respiratory physiology, including the material behavior and interactions between organs. A personalization step is performed to automatically estimate patient-specific thoracic pressure, which drives the biomechanical model. The zone-wise pressure values are obtained by using a trust-region optimizer, where the estimated motion is compared to CT images at end-inspiration (EI). A detailed convergence analysis in terms of mesh resolution, time stepping and number of pressure zones on the surface of the thoracic cavity is carried out. The method is then tested on five public datasets. Results show that the model is able to predict the respiratory motion with an average landmark error of 3.40 ±1.0 mm over the entire respiratory cycle. The estimated 3-D lung motion may constitute as an advanced 3-D surrogate for more accurate medical image reconstruction and patient respiratory analysis.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>25343757</pmid><doi>10.1109/TMI.2014.2363611</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-7439-8312</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0278-0062
ispartof IEEE transactions on medical imaging, 2015-02, Vol.34 (2), p.599-607
issn 0278-0062
1558-254X
language eng
recordid cdi_ieee_primary_6926856
source IEEE Electronic Library (IEL)
subjects Biological system modeling
Biomechanical modeling
Biomechanical Phenomena - physiology
Biomechanics
Computational modeling
Computed tomography
Computer Simulation
Deformable models
Four-Dimensional Computed Tomography - methods
Humans
Image Processing, Computer-Assisted - methods
lung
Lung - anatomy & histology
Lung - physiology
Lungs
Models, Biological
motion prediction
Movement
personalization
Precision Medicine - methods
Respiration
respiratory motion
Thorax
title Patient-Specific Biomechanical Model for the Prediction of Lung Motion From 4-D CT Images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T03%3A19%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Patient-Specific%20Biomechanical%20Model%20for%20the%20Prediction%20of%20Lung%20Motion%20From%204-D%20CT%20Images&rft.jtitle=IEEE%20transactions%20on%20medical%20imaging&rft.au=Fuerst,%20Bernhard&rft.date=2015-02&rft.volume=34&rft.issue=2&rft.spage=599&rft.epage=607&rft.pages=599-607&rft.issn=0278-0062&rft.eissn=1558-254X&rft.coden=ITMID4&rft_id=info:doi/10.1109/TMI.2014.2363611&rft_dat=%3Cproquest_RIE%3E1652456702%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1652456702&rft_id=info:pmid/25343757&rft_ieee_id=6926856&rfr_iscdi=true