Constant Modulus Blind Adaptive Beamforming Based on Unscented Kalman Filtering

An unscented Kalman filter-based constant modulus adaptation algorithm (UKF-CMA) is proposed for blind uniform linear beamforming. The proposed algorithm is obtained by first developing a model of the constant modulus (CM) criterion and then fitting that model into the Kalman filter-style state spac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE signal processing letters 2015-04, Vol.22 (4), p.474-478
Hauptverfasser: Bhotto, Md Zulfiquar Ali, Bajic, Ivan V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 478
container_issue 4
container_start_page 474
container_title IEEE signal processing letters
container_volume 22
creator Bhotto, Md Zulfiquar Ali
Bajic, Ivan V.
description An unscented Kalman filter-based constant modulus adaptation algorithm (UKF-CMA) is proposed for blind uniform linear beamforming. The proposed algorithm is obtained by first developing a model of the constant modulus (CM) criterion and then fitting that model into the Kalman filter-style state space model by using an auxiliary parameter. The proposed algorithm does not require a priori information about the process noise and measurement noise covariance matrices and hence it can be applied readily. Simulation results demonstrate that the proposed algorithm offers improved performance compared to the recursive least square-based CM (RLS-CMA) and least-mean square-based CM (LMS-CMA) algorithms for adaptive blind beamforming.
doi_str_mv 10.1109/LSP.2014.2362932
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_6922488</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6922488</ieee_id><sourcerecordid>3472706901</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-813e71165d96956053f41426f9ce3841b1747b0d74249bc2474f4aaa2767e6d93</originalsourceid><addsrcrecordid>eNpdkE1LAzEQhoMoWKt3wUvAi5etmWw2H8e2WBUrFbTnkO5mZctuUpNdwX9vSosHTzMvPO8wPAhdA5kAEHW_fH-bUAJsQnNOVU5P0AiKQmYpwmnaiSCZUkSeo4sYt4QQCbIYodXcu9gb1-NXXw3tEPGsbVyFp5XZ9c23xTNrutqHrnGfeGairbB3eO1iaV2fwotpO-Pwoml7GxJzic5q00Z7dZxjtF48fMyfsuXq8Xk-XWZlTlmfScitAOBFpbgqOCnymgGjvFalzSWDDQgmNqQSjDK1KSkTrGbGGCq4sLxS-RjdHe7ugv8abOx116Sf2tY464eogTNKiSzoHr39h279EFz6LlHAlWSS7SlyoMrgYwy21rvQdCb8aCB6b1gnw3pvWB8Np8rNodJYa_9wrihlUua_qQJ0wA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1616984849</pqid></control><display><type>article</type><title>Constant Modulus Blind Adaptive Beamforming Based on Unscented Kalman Filtering</title><source>IEEE Electronic Library (IEL)</source><creator>Bhotto, Md Zulfiquar Ali ; Bajic, Ivan V.</creator><creatorcontrib>Bhotto, Md Zulfiquar Ali ; Bajic, Ivan V.</creatorcontrib><description>An unscented Kalman filter-based constant modulus adaptation algorithm (UKF-CMA) is proposed for blind uniform linear beamforming. The proposed algorithm is obtained by first developing a model of the constant modulus (CM) criterion and then fitting that model into the Kalman filter-style state space model by using an auxiliary parameter. The proposed algorithm does not require a priori information about the process noise and measurement noise covariance matrices and hence it can be applied readily. Simulation results demonstrate that the proposed algorithm offers improved performance compared to the recursive least square-based CM (RLS-CMA) and least-mean square-based CM (LMS-CMA) algorithms for adaptive blind beamforming.</description><identifier>ISSN: 1070-9908</identifier><identifier>EISSN: 1558-2361</identifier><identifier>DOI: 10.1109/LSP.2014.2362932</identifier><identifier>CODEN: ISPLEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptation models ; Algorithms ; Array signal processing ; Beamforming ; Blind beamforming ; Blinds ; Computer simulation ; constant modulus ; Constants ; Criteria ; Direction-of-arrival estimation ; Fittings ; Kalman filters ; Noise ; Noise measurement ; Signal processing algorithms ; state space model ; unscented Kalman filter ; Vectors</subject><ispartof>IEEE signal processing letters, 2015-04, Vol.22 (4), p.474-478</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Apr 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c324t-813e71165d96956053f41426f9ce3841b1747b0d74249bc2474f4aaa2767e6d93</citedby><cites>FETCH-LOGICAL-c324t-813e71165d96956053f41426f9ce3841b1747b0d74249bc2474f4aaa2767e6d93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6922488$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6922488$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bhotto, Md Zulfiquar Ali</creatorcontrib><creatorcontrib>Bajic, Ivan V.</creatorcontrib><title>Constant Modulus Blind Adaptive Beamforming Based on Unscented Kalman Filtering</title><title>IEEE signal processing letters</title><addtitle>LSP</addtitle><description>An unscented Kalman filter-based constant modulus adaptation algorithm (UKF-CMA) is proposed for blind uniform linear beamforming. The proposed algorithm is obtained by first developing a model of the constant modulus (CM) criterion and then fitting that model into the Kalman filter-style state space model by using an auxiliary parameter. The proposed algorithm does not require a priori information about the process noise and measurement noise covariance matrices and hence it can be applied readily. Simulation results demonstrate that the proposed algorithm offers improved performance compared to the recursive least square-based CM (RLS-CMA) and least-mean square-based CM (LMS-CMA) algorithms for adaptive blind beamforming.</description><subject>Adaptation models</subject><subject>Algorithms</subject><subject>Array signal processing</subject><subject>Beamforming</subject><subject>Blind beamforming</subject><subject>Blinds</subject><subject>Computer simulation</subject><subject>constant modulus</subject><subject>Constants</subject><subject>Criteria</subject><subject>Direction-of-arrival estimation</subject><subject>Fittings</subject><subject>Kalman filters</subject><subject>Noise</subject><subject>Noise measurement</subject><subject>Signal processing algorithms</subject><subject>state space model</subject><subject>unscented Kalman filter</subject><subject>Vectors</subject><issn>1070-9908</issn><issn>1558-2361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1LAzEQhoMoWKt3wUvAi5etmWw2H8e2WBUrFbTnkO5mZctuUpNdwX9vSosHTzMvPO8wPAhdA5kAEHW_fH-bUAJsQnNOVU5P0AiKQmYpwmnaiSCZUkSeo4sYt4QQCbIYodXcu9gb1-NXXw3tEPGsbVyFp5XZ9c23xTNrutqHrnGfeGairbB3eO1iaV2fwotpO-Pwoml7GxJzic5q00Z7dZxjtF48fMyfsuXq8Xk-XWZlTlmfScitAOBFpbgqOCnymgGjvFalzSWDDQgmNqQSjDK1KSkTrGbGGCq4sLxS-RjdHe7ugv8abOx116Sf2tY464eogTNKiSzoHr39h279EFz6LlHAlWSS7SlyoMrgYwy21rvQdCb8aCB6b1gnw3pvWB8Np8rNodJYa_9wrihlUua_qQJ0wA</recordid><startdate>201504</startdate><enddate>201504</enddate><creator>Bhotto, Md Zulfiquar Ali</creator><creator>Bajic, Ivan V.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>201504</creationdate><title>Constant Modulus Blind Adaptive Beamforming Based on Unscented Kalman Filtering</title><author>Bhotto, Md Zulfiquar Ali ; Bajic, Ivan V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-813e71165d96956053f41426f9ce3841b1747b0d74249bc2474f4aaa2767e6d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Adaptation models</topic><topic>Algorithms</topic><topic>Array signal processing</topic><topic>Beamforming</topic><topic>Blind beamforming</topic><topic>Blinds</topic><topic>Computer simulation</topic><topic>constant modulus</topic><topic>Constants</topic><topic>Criteria</topic><topic>Direction-of-arrival estimation</topic><topic>Fittings</topic><topic>Kalman filters</topic><topic>Noise</topic><topic>Noise measurement</topic><topic>Signal processing algorithms</topic><topic>state space model</topic><topic>unscented Kalman filter</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bhotto, Md Zulfiquar Ali</creatorcontrib><creatorcontrib>Bajic, Ivan V.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE signal processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bhotto, Md Zulfiquar Ali</au><au>Bajic, Ivan V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Constant Modulus Blind Adaptive Beamforming Based on Unscented Kalman Filtering</atitle><jtitle>IEEE signal processing letters</jtitle><stitle>LSP</stitle><date>2015-04</date><risdate>2015</risdate><volume>22</volume><issue>4</issue><spage>474</spage><epage>478</epage><pages>474-478</pages><issn>1070-9908</issn><eissn>1558-2361</eissn><coden>ISPLEM</coden><abstract>An unscented Kalman filter-based constant modulus adaptation algorithm (UKF-CMA) is proposed for blind uniform linear beamforming. The proposed algorithm is obtained by first developing a model of the constant modulus (CM) criterion and then fitting that model into the Kalman filter-style state space model by using an auxiliary parameter. The proposed algorithm does not require a priori information about the process noise and measurement noise covariance matrices and hence it can be applied readily. Simulation results demonstrate that the proposed algorithm offers improved performance compared to the recursive least square-based CM (RLS-CMA) and least-mean square-based CM (LMS-CMA) algorithms for adaptive blind beamforming.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LSP.2014.2362932</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1070-9908
ispartof IEEE signal processing letters, 2015-04, Vol.22 (4), p.474-478
issn 1070-9908
1558-2361
language eng
recordid cdi_ieee_primary_6922488
source IEEE Electronic Library (IEL)
subjects Adaptation models
Algorithms
Array signal processing
Beamforming
Blind beamforming
Blinds
Computer simulation
constant modulus
Constants
Criteria
Direction-of-arrival estimation
Fittings
Kalman filters
Noise
Noise measurement
Signal processing algorithms
state space model
unscented Kalman filter
Vectors
title Constant Modulus Blind Adaptive Beamforming Based on Unscented Kalman Filtering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T18%3A35%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Constant%20Modulus%20Blind%20Adaptive%20Beamforming%20Based%20on%20Unscented%20Kalman%20Filtering&rft.jtitle=IEEE%20signal%20processing%20letters&rft.au=Bhotto,%20Md%20Zulfiquar%20Ali&rft.date=2015-04&rft.volume=22&rft.issue=4&rft.spage=474&rft.epage=478&rft.pages=474-478&rft.issn=1070-9908&rft.eissn=1558-2361&rft.coden=ISPLEM&rft_id=info:doi/10.1109/LSP.2014.2362932&rft_dat=%3Cproquest_RIE%3E3472706901%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1616984849&rft_id=info:pmid/&rft_ieee_id=6922488&rfr_iscdi=true