Filter based backward elimination in wrapper based PSO for feature selection in classification
The advances in data collection increase the dimensionality of the data (i.e. the total number of features) in many fields, which arises a challenge to many existing feature selection approaches. This paper develops a new feature selection approach based on particle swarm optimisation (PSO) and a lo...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3118 |
---|---|
container_issue | |
container_start_page | 3111 |
container_title | |
container_volume | |
creator | Nguyen, Hoai Bach Bing Xue Liu, Ivy Mengjie Zhang |
description | The advances in data collection increase the dimensionality of the data (i.e. the total number of features) in many fields, which arises a challenge to many existing feature selection approaches. This paper develops a new feature selection approach based on particle swarm optimisation (PSO) and a local search that mimics the typical backward elimination feature selection method. The proposed algorithm uses a wrapper based fitness function, i.e. the classification error rate. The local search is performed only on the global best and uses a filter based measure, which aims to take the advantages of both filter and wrapper approaches. The proposed approach is tested and compared with three recent PSO based feature selection algorithms and two typical traditional feature selection methods. Experiments on eight benchmark datasets show that the proposed algorithm can be successfully used to select a significantly smaller number of features and simultaneously improve the classification performance over using all features. The proposed approach outperforms the three PSO based algorithms and the two traditional methods. |
doi_str_mv | 10.1109/CEC.2014.6900657 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_RIE</sourceid><recordid>TN_cdi_ieee_primary_6900657</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6900657</ieee_id><sourcerecordid>6900657</sourcerecordid><originalsourceid>FETCH-LOGICAL-c269t-11353936febdfa5048d058313929b7477a1f13e1c402e6eff4fe4d82000ca90f3</originalsourceid><addsrcrecordid>eNo9UFFLwzAYjKLgmH0XfMkfaP2-Jm2SRymbCoMJKvjkSNMvEO22klSG_96i05e7e7g7uGPsCqFABHPTLJqiBJRFbQDqSp2wzCiNUhmDUmtxymZoJOYAZX02adAmV0q_XrAspXcAQKWqSuKMvS1DP1LkrU3UTeg-DjZ2nPqwDTs7hv2Ohx0_RDsM_67HpzX3-8g92fEzEk_Uk_uzut6mFHxwP-FLdu5tnyg78py9LBfPzX2-Wt89NLer3JW1GXNEUQkjak9t520FUndQaYHClKZVUimLHgWhk1BSTd5LT7LT5bTEWQNezNn1b28gos0Qw9bGr83xHfENVEdWlw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Filter based backward elimination in wrapper based PSO for feature selection in classification</title><source>IEEE Electronic Library (IEL)</source><creator>Nguyen, Hoai Bach ; Bing Xue ; Liu, Ivy ; Mengjie Zhang</creator><creatorcontrib>Nguyen, Hoai Bach ; Bing Xue ; Liu, Ivy ; Mengjie Zhang</creatorcontrib><description>The advances in data collection increase the dimensionality of the data (i.e. the total number of features) in many fields, which arises a challenge to many existing feature selection approaches. This paper develops a new feature selection approach based on particle swarm optimisation (PSO) and a local search that mimics the typical backward elimination feature selection method. The proposed algorithm uses a wrapper based fitness function, i.e. the classification error rate. The local search is performed only on the global best and uses a filter based measure, which aims to take the advantages of both filter and wrapper approaches. The proposed approach is tested and compared with three recent PSO based feature selection algorithms and two typical traditional feature selection methods. Experiments on eight benchmark datasets show that the proposed algorithm can be successfully used to select a significantly smaller number of features and simultaneously improve the classification performance over using all features. The proposed approach outperforms the three PSO based algorithms and the two traditional methods.</description><identifier>ISSN: 1089-778X</identifier><identifier>EISSN: 1941-0026</identifier><identifier>EISBN: 9781479914883</identifier><identifier>EISBN: 1479966266</identifier><identifier>EISBN: 9781479966264</identifier><identifier>EISBN: 1479914886</identifier><identifier>DOI: 10.1109/CEC.2014.6900657</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Clustering algorithms ; Entropy ; Error analysis ; Mutual information ; Particle swarm optimization ; Training</subject><ispartof>2014 IEEE Congress on Evolutionary Computation (CEC), 2014, p.3111-3118</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c269t-11353936febdfa5048d058313929b7477a1f13e1c402e6eff4fe4d82000ca90f3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6900657$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,796,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6900657$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Nguyen, Hoai Bach</creatorcontrib><creatorcontrib>Bing Xue</creatorcontrib><creatorcontrib>Liu, Ivy</creatorcontrib><creatorcontrib>Mengjie Zhang</creatorcontrib><title>Filter based backward elimination in wrapper based PSO for feature selection in classification</title><title>2014 IEEE Congress on Evolutionary Computation (CEC)</title><addtitle>CEC</addtitle><description>The advances in data collection increase the dimensionality of the data (i.e. the total number of features) in many fields, which arises a challenge to many existing feature selection approaches. This paper develops a new feature selection approach based on particle swarm optimisation (PSO) and a local search that mimics the typical backward elimination feature selection method. The proposed algorithm uses a wrapper based fitness function, i.e. the classification error rate. The local search is performed only on the global best and uses a filter based measure, which aims to take the advantages of both filter and wrapper approaches. The proposed approach is tested and compared with three recent PSO based feature selection algorithms and two typical traditional feature selection methods. Experiments on eight benchmark datasets show that the proposed algorithm can be successfully used to select a significantly smaller number of features and simultaneously improve the classification performance over using all features. The proposed approach outperforms the three PSO based algorithms and the two traditional methods.</description><subject>Accuracy</subject><subject>Clustering algorithms</subject><subject>Entropy</subject><subject>Error analysis</subject><subject>Mutual information</subject><subject>Particle swarm optimization</subject><subject>Training</subject><issn>1089-778X</issn><issn>1941-0026</issn><isbn>9781479914883</isbn><isbn>1479966266</isbn><isbn>9781479966264</isbn><isbn>1479914886</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2014</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9UFFLwzAYjKLgmH0XfMkfaP2-Jm2SRymbCoMJKvjkSNMvEO22klSG_96i05e7e7g7uGPsCqFABHPTLJqiBJRFbQDqSp2wzCiNUhmDUmtxymZoJOYAZX02adAmV0q_XrAspXcAQKWqSuKMvS1DP1LkrU3UTeg-DjZ2nPqwDTs7hv2Ohx0_RDsM_67HpzX3-8g92fEzEk_Uk_uzut6mFHxwP-FLdu5tnyg78py9LBfPzX2-Wt89NLer3JW1GXNEUQkjak9t520FUndQaYHClKZVUimLHgWhk1BSTd5LT7LT5bTEWQNezNn1b28gos0Qw9bGr83xHfENVEdWlw</recordid><startdate>201407</startdate><enddate>201407</enddate><creator>Nguyen, Hoai Bach</creator><creator>Bing Xue</creator><creator>Liu, Ivy</creator><creator>Mengjie Zhang</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201407</creationdate><title>Filter based backward elimination in wrapper based PSO for feature selection in classification</title><author>Nguyen, Hoai Bach ; Bing Xue ; Liu, Ivy ; Mengjie Zhang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c269t-11353936febdfa5048d058313929b7477a1f13e1c402e6eff4fe4d82000ca90f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Accuracy</topic><topic>Clustering algorithms</topic><topic>Entropy</topic><topic>Error analysis</topic><topic>Mutual information</topic><topic>Particle swarm optimization</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nguyen, Hoai Bach</creatorcontrib><creatorcontrib>Bing Xue</creatorcontrib><creatorcontrib>Liu, Ivy</creatorcontrib><creatorcontrib>Mengjie Zhang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nguyen, Hoai Bach</au><au>Bing Xue</au><au>Liu, Ivy</au><au>Mengjie Zhang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Filter based backward elimination in wrapper based PSO for feature selection in classification</atitle><btitle>2014 IEEE Congress on Evolutionary Computation (CEC)</btitle><stitle>CEC</stitle><date>2014-07</date><risdate>2014</risdate><spage>3111</spage><epage>3118</epage><pages>3111-3118</pages><issn>1089-778X</issn><eissn>1941-0026</eissn><eisbn>9781479914883</eisbn><eisbn>1479966266</eisbn><eisbn>9781479966264</eisbn><eisbn>1479914886</eisbn><abstract>The advances in data collection increase the dimensionality of the data (i.e. the total number of features) in many fields, which arises a challenge to many existing feature selection approaches. This paper develops a new feature selection approach based on particle swarm optimisation (PSO) and a local search that mimics the typical backward elimination feature selection method. The proposed algorithm uses a wrapper based fitness function, i.e. the classification error rate. The local search is performed only on the global best and uses a filter based measure, which aims to take the advantages of both filter and wrapper approaches. The proposed approach is tested and compared with three recent PSO based feature selection algorithms and two typical traditional feature selection methods. Experiments on eight benchmark datasets show that the proposed algorithm can be successfully used to select a significantly smaller number of features and simultaneously improve the classification performance over using all features. The proposed approach outperforms the three PSO based algorithms and the two traditional methods.</abstract><pub>IEEE</pub><doi>10.1109/CEC.2014.6900657</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1089-778X |
ispartof | 2014 IEEE Congress on Evolutionary Computation (CEC), 2014, p.3111-3118 |
issn | 1089-778X 1941-0026 |
language | eng |
recordid | cdi_ieee_primary_6900657 |
source | IEEE Electronic Library (IEL) |
subjects | Accuracy Clustering algorithms Entropy Error analysis Mutual information Particle swarm optimization Training |
title | Filter based backward elimination in wrapper based PSO for feature selection in classification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T00%3A06%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Filter%20based%20backward%20elimination%20in%20wrapper%20based%20PSO%20for%20feature%20selection%20in%20classification&rft.btitle=2014%20IEEE%20Congress%20on%20Evolutionary%20Computation%20(CEC)&rft.au=Nguyen,%20Hoai%20Bach&rft.date=2014-07&rft.spage=3111&rft.epage=3118&rft.pages=3111-3118&rft.issn=1089-778X&rft.eissn=1941-0026&rft_id=info:doi/10.1109/CEC.2014.6900657&rft_dat=%3Cieee_RIE%3E6900657%3C/ieee_RIE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781479914883&rft.eisbn_list=1479966266&rft.eisbn_list=9781479966264&rft.eisbn_list=1479914886&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6900657&rfr_iscdi=true |