Filter based backward elimination in wrapper based PSO for feature selection in classification

The advances in data collection increase the dimensionality of the data (i.e. the total number of features) in many fields, which arises a challenge to many existing feature selection approaches. This paper develops a new feature selection approach based on particle swarm optimisation (PSO) and a lo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Nguyen, Hoai Bach, Bing Xue, Liu, Ivy, Mengjie Zhang
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3118
container_issue
container_start_page 3111
container_title
container_volume
creator Nguyen, Hoai Bach
Bing Xue
Liu, Ivy
Mengjie Zhang
description The advances in data collection increase the dimensionality of the data (i.e. the total number of features) in many fields, which arises a challenge to many existing feature selection approaches. This paper develops a new feature selection approach based on particle swarm optimisation (PSO) and a local search that mimics the typical backward elimination feature selection method. The proposed algorithm uses a wrapper based fitness function, i.e. the classification error rate. The local search is performed only on the global best and uses a filter based measure, which aims to take the advantages of both filter and wrapper approaches. The proposed approach is tested and compared with three recent PSO based feature selection algorithms and two typical traditional feature selection methods. Experiments on eight benchmark datasets show that the proposed algorithm can be successfully used to select a significantly smaller number of features and simultaneously improve the classification performance over using all features. The proposed approach outperforms the three PSO based algorithms and the two traditional methods.
doi_str_mv 10.1109/CEC.2014.6900657
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_RIE</sourceid><recordid>TN_cdi_ieee_primary_6900657</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6900657</ieee_id><sourcerecordid>6900657</sourcerecordid><originalsourceid>FETCH-LOGICAL-c269t-11353936febdfa5048d058313929b7477a1f13e1c402e6eff4fe4d82000ca90f3</originalsourceid><addsrcrecordid>eNo9UFFLwzAYjKLgmH0XfMkfaP2-Jm2SRymbCoMJKvjkSNMvEO22klSG_96i05e7e7g7uGPsCqFABHPTLJqiBJRFbQDqSp2wzCiNUhmDUmtxymZoJOYAZX02adAmV0q_XrAspXcAQKWqSuKMvS1DP1LkrU3UTeg-DjZ2nPqwDTs7hv2Ohx0_RDsM_67HpzX3-8g92fEzEk_Uk_uzut6mFHxwP-FLdu5tnyg78py9LBfPzX2-Wt89NLer3JW1GXNEUQkjak9t520FUndQaYHClKZVUimLHgWhk1BSTd5LT7LT5bTEWQNezNn1b28gos0Qw9bGr83xHfENVEdWlw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Filter based backward elimination in wrapper based PSO for feature selection in classification</title><source>IEEE Electronic Library (IEL)</source><creator>Nguyen, Hoai Bach ; Bing Xue ; Liu, Ivy ; Mengjie Zhang</creator><creatorcontrib>Nguyen, Hoai Bach ; Bing Xue ; Liu, Ivy ; Mengjie Zhang</creatorcontrib><description>The advances in data collection increase the dimensionality of the data (i.e. the total number of features) in many fields, which arises a challenge to many existing feature selection approaches. This paper develops a new feature selection approach based on particle swarm optimisation (PSO) and a local search that mimics the typical backward elimination feature selection method. The proposed algorithm uses a wrapper based fitness function, i.e. the classification error rate. The local search is performed only on the global best and uses a filter based measure, which aims to take the advantages of both filter and wrapper approaches. The proposed approach is tested and compared with three recent PSO based feature selection algorithms and two typical traditional feature selection methods. Experiments on eight benchmark datasets show that the proposed algorithm can be successfully used to select a significantly smaller number of features and simultaneously improve the classification performance over using all features. The proposed approach outperforms the three PSO based algorithms and the two traditional methods.</description><identifier>ISSN: 1089-778X</identifier><identifier>EISSN: 1941-0026</identifier><identifier>EISBN: 9781479914883</identifier><identifier>EISBN: 1479966266</identifier><identifier>EISBN: 9781479966264</identifier><identifier>EISBN: 1479914886</identifier><identifier>DOI: 10.1109/CEC.2014.6900657</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Clustering algorithms ; Entropy ; Error analysis ; Mutual information ; Particle swarm optimization ; Training</subject><ispartof>2014 IEEE Congress on Evolutionary Computation (CEC), 2014, p.3111-3118</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c269t-11353936febdfa5048d058313929b7477a1f13e1c402e6eff4fe4d82000ca90f3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6900657$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,796,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6900657$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Nguyen, Hoai Bach</creatorcontrib><creatorcontrib>Bing Xue</creatorcontrib><creatorcontrib>Liu, Ivy</creatorcontrib><creatorcontrib>Mengjie Zhang</creatorcontrib><title>Filter based backward elimination in wrapper based PSO for feature selection in classification</title><title>2014 IEEE Congress on Evolutionary Computation (CEC)</title><addtitle>CEC</addtitle><description>The advances in data collection increase the dimensionality of the data (i.e. the total number of features) in many fields, which arises a challenge to many existing feature selection approaches. This paper develops a new feature selection approach based on particle swarm optimisation (PSO) and a local search that mimics the typical backward elimination feature selection method. The proposed algorithm uses a wrapper based fitness function, i.e. the classification error rate. The local search is performed only on the global best and uses a filter based measure, which aims to take the advantages of both filter and wrapper approaches. The proposed approach is tested and compared with three recent PSO based feature selection algorithms and two typical traditional feature selection methods. Experiments on eight benchmark datasets show that the proposed algorithm can be successfully used to select a significantly smaller number of features and simultaneously improve the classification performance over using all features. The proposed approach outperforms the three PSO based algorithms and the two traditional methods.</description><subject>Accuracy</subject><subject>Clustering algorithms</subject><subject>Entropy</subject><subject>Error analysis</subject><subject>Mutual information</subject><subject>Particle swarm optimization</subject><subject>Training</subject><issn>1089-778X</issn><issn>1941-0026</issn><isbn>9781479914883</isbn><isbn>1479966266</isbn><isbn>9781479966264</isbn><isbn>1479914886</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2014</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9UFFLwzAYjKLgmH0XfMkfaP2-Jm2SRymbCoMJKvjkSNMvEO22klSG_96i05e7e7g7uGPsCqFABHPTLJqiBJRFbQDqSp2wzCiNUhmDUmtxymZoJOYAZX02adAmV0q_XrAspXcAQKWqSuKMvS1DP1LkrU3UTeg-DjZ2nPqwDTs7hv2Ohx0_RDsM_67HpzX3-8g92fEzEk_Uk_uzut6mFHxwP-FLdu5tnyg78py9LBfPzX2-Wt89NLer3JW1GXNEUQkjak9t520FUndQaYHClKZVUimLHgWhk1BSTd5LT7LT5bTEWQNezNn1b28gos0Qw9bGr83xHfENVEdWlw</recordid><startdate>201407</startdate><enddate>201407</enddate><creator>Nguyen, Hoai Bach</creator><creator>Bing Xue</creator><creator>Liu, Ivy</creator><creator>Mengjie Zhang</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201407</creationdate><title>Filter based backward elimination in wrapper based PSO for feature selection in classification</title><author>Nguyen, Hoai Bach ; Bing Xue ; Liu, Ivy ; Mengjie Zhang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c269t-11353936febdfa5048d058313929b7477a1f13e1c402e6eff4fe4d82000ca90f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Accuracy</topic><topic>Clustering algorithms</topic><topic>Entropy</topic><topic>Error analysis</topic><topic>Mutual information</topic><topic>Particle swarm optimization</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nguyen, Hoai Bach</creatorcontrib><creatorcontrib>Bing Xue</creatorcontrib><creatorcontrib>Liu, Ivy</creatorcontrib><creatorcontrib>Mengjie Zhang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nguyen, Hoai Bach</au><au>Bing Xue</au><au>Liu, Ivy</au><au>Mengjie Zhang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Filter based backward elimination in wrapper based PSO for feature selection in classification</atitle><btitle>2014 IEEE Congress on Evolutionary Computation (CEC)</btitle><stitle>CEC</stitle><date>2014-07</date><risdate>2014</risdate><spage>3111</spage><epage>3118</epage><pages>3111-3118</pages><issn>1089-778X</issn><eissn>1941-0026</eissn><eisbn>9781479914883</eisbn><eisbn>1479966266</eisbn><eisbn>9781479966264</eisbn><eisbn>1479914886</eisbn><abstract>The advances in data collection increase the dimensionality of the data (i.e. the total number of features) in many fields, which arises a challenge to many existing feature selection approaches. This paper develops a new feature selection approach based on particle swarm optimisation (PSO) and a local search that mimics the typical backward elimination feature selection method. The proposed algorithm uses a wrapper based fitness function, i.e. the classification error rate. The local search is performed only on the global best and uses a filter based measure, which aims to take the advantages of both filter and wrapper approaches. The proposed approach is tested and compared with three recent PSO based feature selection algorithms and two typical traditional feature selection methods. Experiments on eight benchmark datasets show that the proposed algorithm can be successfully used to select a significantly smaller number of features and simultaneously improve the classification performance over using all features. The proposed approach outperforms the three PSO based algorithms and the two traditional methods.</abstract><pub>IEEE</pub><doi>10.1109/CEC.2014.6900657</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1089-778X
ispartof 2014 IEEE Congress on Evolutionary Computation (CEC), 2014, p.3111-3118
issn 1089-778X
1941-0026
language eng
recordid cdi_ieee_primary_6900657
source IEEE Electronic Library (IEL)
subjects Accuracy
Clustering algorithms
Entropy
Error analysis
Mutual information
Particle swarm optimization
Training
title Filter based backward elimination in wrapper based PSO for feature selection in classification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T00%3A06%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Filter%20based%20backward%20elimination%20in%20wrapper%20based%20PSO%20for%20feature%20selection%20in%20classification&rft.btitle=2014%20IEEE%20Congress%20on%20Evolutionary%20Computation%20(CEC)&rft.au=Nguyen,%20Hoai%20Bach&rft.date=2014-07&rft.spage=3111&rft.epage=3118&rft.pages=3111-3118&rft.issn=1089-778X&rft.eissn=1941-0026&rft_id=info:doi/10.1109/CEC.2014.6900657&rft_dat=%3Cieee_RIE%3E6900657%3C/ieee_RIE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781479914883&rft.eisbn_list=1479966266&rft.eisbn_list=9781479966264&rft.eisbn_list=1479914886&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6900657&rfr_iscdi=true