Constraint handling in agent-based optimization by independent sub-swarms

Agent-based optimization algorithms are an effective means of solving global optimization problems with design spaces containing multiple local minima, however, modifications have to be made to such algorithms to be able to solve constrained optimization problems. The gravitational search algorithm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Poole, Daniel J., Allen, Christian B., Rendall, Thomas C. S.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1005
container_issue
container_start_page 998
container_title
container_volume
creator Poole, Daniel J.
Allen, Christian B.
Rendall, Thomas C. S.
description Agent-based optimization algorithms are an effective means of solving global optimization problems with design spaces containing multiple local minima, however, modifications have to be made to such algorithms to be able to solve constrained optimization problems. The gravitational search algorithm (GSA) is an efficient and effective agent-based method, however, the idea of global transfer of data that is key to the algorithm's success prohibits coupling of many state-of-the-art methods for handling constraints. Hence, a robust method, called separation-sub-swarm (3S) has been developed specifically for use with GSA by exploiting but also accommodating the global transfer of data that occurs in GSA, however it can also act as an entirely black-box module so is generally applicable. This newly developed 3S method has been shown to be efficient and effective at optimizing a suite of constrained analytical test functions using GSA.
doi_str_mv 10.1109/CEC.2014.6900270
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_RIE</sourceid><recordid>TN_cdi_ieee_primary_6900270</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6900270</ieee_id><sourcerecordid>6900270</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-4dfe486498555d7fe8fda30ea48cb2a06bbdc5e7732b54771bff62f6f13c07133</originalsourceid><addsrcrecordid>eNotkEFLAzEUhKMoWOreBS_7B1Lf2yT7kqMsVQsFLwreSrJJaqRNy2ZF6q93wV5mBj5mDsPYHcICEcxDt-wWDaBctAagIbhglSGNkoxBqbW4ZDM0EvkE26spgzacSH_csKqULwBAIqUkztiqO-QyDjblsf602e9S3tYp13Yb8sidLcHXh-OY9unXjumQa3easA_HMMnUKd-Olx877Mstu452V0J19jl7f1q-dS98_fq86h7XPCGpkUsfg9StNFop5SkGHb0VEKzUvWsstM75XgUi0TglidDF2DaxjSh6IBRizu7_d1MIYXMc0t4Op835CPEHGWBQJw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Constraint handling in agent-based optimization by independent sub-swarms</title><source>IEEE Electronic Library (IEL)</source><creator>Poole, Daniel J. ; Allen, Christian B. ; Rendall, Thomas C. S.</creator><creatorcontrib>Poole, Daniel J. ; Allen, Christian B. ; Rendall, Thomas C. S.</creatorcontrib><description>Agent-based optimization algorithms are an effective means of solving global optimization problems with design spaces containing multiple local minima, however, modifications have to be made to such algorithms to be able to solve constrained optimization problems. The gravitational search algorithm (GSA) is an efficient and effective agent-based method, however, the idea of global transfer of data that is key to the algorithm's success prohibits coupling of many state-of-the-art methods for handling constraints. Hence, a robust method, called separation-sub-swarm (3S) has been developed specifically for use with GSA by exploiting but also accommodating the global transfer of data that occurs in GSA, however it can also act as an entirely black-box module so is generally applicable. This newly developed 3S method has been shown to be efficient and effective at optimizing a suite of constrained analytical test functions using GSA.</description><identifier>ISSN: 1089-778X</identifier><identifier>EISSN: 1941-0026</identifier><identifier>EISBN: 9781479914883</identifier><identifier>EISBN: 1479966266</identifier><identifier>EISBN: 9781479966264</identifier><identifier>EISBN: 1479914886</identifier><identifier>DOI: 10.1109/CEC.2014.6900270</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Educational institutions ; Heuristic algorithms ; Linear programming ; Optimization ; Particle swarm optimization ; Search problems</subject><ispartof>2014 IEEE Congress on Evolutionary Computation (CEC), 2014, p.998-1005</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6900270$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,796,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6900270$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Poole, Daniel J.</creatorcontrib><creatorcontrib>Allen, Christian B.</creatorcontrib><creatorcontrib>Rendall, Thomas C. S.</creatorcontrib><title>Constraint handling in agent-based optimization by independent sub-swarms</title><title>2014 IEEE Congress on Evolutionary Computation (CEC)</title><addtitle>CEC</addtitle><description>Agent-based optimization algorithms are an effective means of solving global optimization problems with design spaces containing multiple local minima, however, modifications have to be made to such algorithms to be able to solve constrained optimization problems. The gravitational search algorithm (GSA) is an efficient and effective agent-based method, however, the idea of global transfer of data that is key to the algorithm's success prohibits coupling of many state-of-the-art methods for handling constraints. Hence, a robust method, called separation-sub-swarm (3S) has been developed specifically for use with GSA by exploiting but also accommodating the global transfer of data that occurs in GSA, however it can also act as an entirely black-box module so is generally applicable. This newly developed 3S method has been shown to be efficient and effective at optimizing a suite of constrained analytical test functions using GSA.</description><subject>Algorithm design and analysis</subject><subject>Educational institutions</subject><subject>Heuristic algorithms</subject><subject>Linear programming</subject><subject>Optimization</subject><subject>Particle swarm optimization</subject><subject>Search problems</subject><issn>1089-778X</issn><issn>1941-0026</issn><isbn>9781479914883</isbn><isbn>1479966266</isbn><isbn>9781479966264</isbn><isbn>1479914886</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2014</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotkEFLAzEUhKMoWOreBS_7B1Lf2yT7kqMsVQsFLwreSrJJaqRNy2ZF6q93wV5mBj5mDsPYHcICEcxDt-wWDaBctAagIbhglSGNkoxBqbW4ZDM0EvkE26spgzacSH_csKqULwBAIqUkztiqO-QyDjblsf602e9S3tYp13Yb8sidLcHXh-OY9unXjumQa3easA_HMMnUKd-Olx877Mstu452V0J19jl7f1q-dS98_fq86h7XPCGpkUsfg9StNFop5SkGHb0VEKzUvWsstM75XgUi0TglidDF2DaxjSh6IBRizu7_d1MIYXMc0t4Op835CPEHGWBQJw</recordid><startdate>201407</startdate><enddate>201407</enddate><creator>Poole, Daniel J.</creator><creator>Allen, Christian B.</creator><creator>Rendall, Thomas C. S.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201407</creationdate><title>Constraint handling in agent-based optimization by independent sub-swarms</title><author>Poole, Daniel J. ; Allen, Christian B. ; Rendall, Thomas C. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-4dfe486498555d7fe8fda30ea48cb2a06bbdc5e7732b54771bff62f6f13c07133</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithm design and analysis</topic><topic>Educational institutions</topic><topic>Heuristic algorithms</topic><topic>Linear programming</topic><topic>Optimization</topic><topic>Particle swarm optimization</topic><topic>Search problems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Poole, Daniel J.</creatorcontrib><creatorcontrib>Allen, Christian B.</creatorcontrib><creatorcontrib>Rendall, Thomas C. S.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Poole, Daniel J.</au><au>Allen, Christian B.</au><au>Rendall, Thomas C. S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Constraint handling in agent-based optimization by independent sub-swarms</atitle><btitle>2014 IEEE Congress on Evolutionary Computation (CEC)</btitle><stitle>CEC</stitle><date>2014-07</date><risdate>2014</risdate><spage>998</spage><epage>1005</epage><pages>998-1005</pages><issn>1089-778X</issn><eissn>1941-0026</eissn><eisbn>9781479914883</eisbn><eisbn>1479966266</eisbn><eisbn>9781479966264</eisbn><eisbn>1479914886</eisbn><abstract>Agent-based optimization algorithms are an effective means of solving global optimization problems with design spaces containing multiple local minima, however, modifications have to be made to such algorithms to be able to solve constrained optimization problems. The gravitational search algorithm (GSA) is an efficient and effective agent-based method, however, the idea of global transfer of data that is key to the algorithm's success prohibits coupling of many state-of-the-art methods for handling constraints. Hence, a robust method, called separation-sub-swarm (3S) has been developed specifically for use with GSA by exploiting but also accommodating the global transfer of data that occurs in GSA, however it can also act as an entirely black-box module so is generally applicable. This newly developed 3S method has been shown to be efficient and effective at optimizing a suite of constrained analytical test functions using GSA.</abstract><pub>IEEE</pub><doi>10.1109/CEC.2014.6900270</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1089-778X
ispartof 2014 IEEE Congress on Evolutionary Computation (CEC), 2014, p.998-1005
issn 1089-778X
1941-0026
language eng
recordid cdi_ieee_primary_6900270
source IEEE Electronic Library (IEL)
subjects Algorithm design and analysis
Educational institutions
Heuristic algorithms
Linear programming
Optimization
Particle swarm optimization
Search problems
title Constraint handling in agent-based optimization by independent sub-swarms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T11%3A20%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Constraint%20handling%20in%20agent-based%20optimization%20by%20independent%20sub-swarms&rft.btitle=2014%20IEEE%20Congress%20on%20Evolutionary%20Computation%20(CEC)&rft.au=Poole,%20Daniel%20J.&rft.date=2014-07&rft.spage=998&rft.epage=1005&rft.pages=998-1005&rft.issn=1089-778X&rft.eissn=1941-0026&rft_id=info:doi/10.1109/CEC.2014.6900270&rft_dat=%3Cieee_RIE%3E6900270%3C/ieee_RIE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781479914883&rft.eisbn_list=1479966266&rft.eisbn_list=9781479966264&rft.eisbn_list=1479914886&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6900270&rfr_iscdi=true