Constraint handling in agent-based optimization by independent sub-swarms
Agent-based optimization algorithms are an effective means of solving global optimization problems with design spaces containing multiple local minima, however, modifications have to be made to such algorithms to be able to solve constrained optimization problems. The gravitational search algorithm...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1005 |
---|---|
container_issue | |
container_start_page | 998 |
container_title | |
container_volume | |
creator | Poole, Daniel J. Allen, Christian B. Rendall, Thomas C. S. |
description | Agent-based optimization algorithms are an effective means of solving global optimization problems with design spaces containing multiple local minima, however, modifications have to be made to such algorithms to be able to solve constrained optimization problems. The gravitational search algorithm (GSA) is an efficient and effective agent-based method, however, the idea of global transfer of data that is key to the algorithm's success prohibits coupling of many state-of-the-art methods for handling constraints. Hence, a robust method, called separation-sub-swarm (3S) has been developed specifically for use with GSA by exploiting but also accommodating the global transfer of data that occurs in GSA, however it can also act as an entirely black-box module so is generally applicable. This newly developed 3S method has been shown to be efficient and effective at optimizing a suite of constrained analytical test functions using GSA. |
doi_str_mv | 10.1109/CEC.2014.6900270 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_RIE</sourceid><recordid>TN_cdi_ieee_primary_6900270</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6900270</ieee_id><sourcerecordid>6900270</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-4dfe486498555d7fe8fda30ea48cb2a06bbdc5e7732b54771bff62f6f13c07133</originalsourceid><addsrcrecordid>eNotkEFLAzEUhKMoWOreBS_7B1Lf2yT7kqMsVQsFLwreSrJJaqRNy2ZF6q93wV5mBj5mDsPYHcICEcxDt-wWDaBctAagIbhglSGNkoxBqbW4ZDM0EvkE26spgzacSH_csKqULwBAIqUkztiqO-QyDjblsf602e9S3tYp13Yb8sidLcHXh-OY9unXjumQa3easA_HMMnUKd-Olx877Mstu452V0J19jl7f1q-dS98_fq86h7XPCGpkUsfg9StNFop5SkGHb0VEKzUvWsstM75XgUi0TglidDF2DaxjSh6IBRizu7_d1MIYXMc0t4Op835CPEHGWBQJw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Constraint handling in agent-based optimization by independent sub-swarms</title><source>IEEE Electronic Library (IEL)</source><creator>Poole, Daniel J. ; Allen, Christian B. ; Rendall, Thomas C. S.</creator><creatorcontrib>Poole, Daniel J. ; Allen, Christian B. ; Rendall, Thomas C. S.</creatorcontrib><description>Agent-based optimization algorithms are an effective means of solving global optimization problems with design spaces containing multiple local minima, however, modifications have to be made to such algorithms to be able to solve constrained optimization problems. The gravitational search algorithm (GSA) is an efficient and effective agent-based method, however, the idea of global transfer of data that is key to the algorithm's success prohibits coupling of many state-of-the-art methods for handling constraints. Hence, a robust method, called separation-sub-swarm (3S) has been developed specifically for use with GSA by exploiting but also accommodating the global transfer of data that occurs in GSA, however it can also act as an entirely black-box module so is generally applicable. This newly developed 3S method has been shown to be efficient and effective at optimizing a suite of constrained analytical test functions using GSA.</description><identifier>ISSN: 1089-778X</identifier><identifier>EISSN: 1941-0026</identifier><identifier>EISBN: 9781479914883</identifier><identifier>EISBN: 1479966266</identifier><identifier>EISBN: 9781479966264</identifier><identifier>EISBN: 1479914886</identifier><identifier>DOI: 10.1109/CEC.2014.6900270</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Educational institutions ; Heuristic algorithms ; Linear programming ; Optimization ; Particle swarm optimization ; Search problems</subject><ispartof>2014 IEEE Congress on Evolutionary Computation (CEC), 2014, p.998-1005</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6900270$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,796,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6900270$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Poole, Daniel J.</creatorcontrib><creatorcontrib>Allen, Christian B.</creatorcontrib><creatorcontrib>Rendall, Thomas C. S.</creatorcontrib><title>Constraint handling in agent-based optimization by independent sub-swarms</title><title>2014 IEEE Congress on Evolutionary Computation (CEC)</title><addtitle>CEC</addtitle><description>Agent-based optimization algorithms are an effective means of solving global optimization problems with design spaces containing multiple local minima, however, modifications have to be made to such algorithms to be able to solve constrained optimization problems. The gravitational search algorithm (GSA) is an efficient and effective agent-based method, however, the idea of global transfer of data that is key to the algorithm's success prohibits coupling of many state-of-the-art methods for handling constraints. Hence, a robust method, called separation-sub-swarm (3S) has been developed specifically for use with GSA by exploiting but also accommodating the global transfer of data that occurs in GSA, however it can also act as an entirely black-box module so is generally applicable. This newly developed 3S method has been shown to be efficient and effective at optimizing a suite of constrained analytical test functions using GSA.</description><subject>Algorithm design and analysis</subject><subject>Educational institutions</subject><subject>Heuristic algorithms</subject><subject>Linear programming</subject><subject>Optimization</subject><subject>Particle swarm optimization</subject><subject>Search problems</subject><issn>1089-778X</issn><issn>1941-0026</issn><isbn>9781479914883</isbn><isbn>1479966266</isbn><isbn>9781479966264</isbn><isbn>1479914886</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2014</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotkEFLAzEUhKMoWOreBS_7B1Lf2yT7kqMsVQsFLwreSrJJaqRNy2ZF6q93wV5mBj5mDsPYHcICEcxDt-wWDaBctAagIbhglSGNkoxBqbW4ZDM0EvkE26spgzacSH_csKqULwBAIqUkztiqO-QyDjblsf602e9S3tYp13Yb8sidLcHXh-OY9unXjumQa3easA_HMMnUKd-Olx877Mstu452V0J19jl7f1q-dS98_fq86h7XPCGpkUsfg9StNFop5SkGHb0VEKzUvWsstM75XgUi0TglidDF2DaxjSh6IBRizu7_d1MIYXMc0t4Op835CPEHGWBQJw</recordid><startdate>201407</startdate><enddate>201407</enddate><creator>Poole, Daniel J.</creator><creator>Allen, Christian B.</creator><creator>Rendall, Thomas C. S.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201407</creationdate><title>Constraint handling in agent-based optimization by independent sub-swarms</title><author>Poole, Daniel J. ; Allen, Christian B. ; Rendall, Thomas C. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-4dfe486498555d7fe8fda30ea48cb2a06bbdc5e7732b54771bff62f6f13c07133</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithm design and analysis</topic><topic>Educational institutions</topic><topic>Heuristic algorithms</topic><topic>Linear programming</topic><topic>Optimization</topic><topic>Particle swarm optimization</topic><topic>Search problems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Poole, Daniel J.</creatorcontrib><creatorcontrib>Allen, Christian B.</creatorcontrib><creatorcontrib>Rendall, Thomas C. S.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Poole, Daniel J.</au><au>Allen, Christian B.</au><au>Rendall, Thomas C. S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Constraint handling in agent-based optimization by independent sub-swarms</atitle><btitle>2014 IEEE Congress on Evolutionary Computation (CEC)</btitle><stitle>CEC</stitle><date>2014-07</date><risdate>2014</risdate><spage>998</spage><epage>1005</epage><pages>998-1005</pages><issn>1089-778X</issn><eissn>1941-0026</eissn><eisbn>9781479914883</eisbn><eisbn>1479966266</eisbn><eisbn>9781479966264</eisbn><eisbn>1479914886</eisbn><abstract>Agent-based optimization algorithms are an effective means of solving global optimization problems with design spaces containing multiple local minima, however, modifications have to be made to such algorithms to be able to solve constrained optimization problems. The gravitational search algorithm (GSA) is an efficient and effective agent-based method, however, the idea of global transfer of data that is key to the algorithm's success prohibits coupling of many state-of-the-art methods for handling constraints. Hence, a robust method, called separation-sub-swarm (3S) has been developed specifically for use with GSA by exploiting but also accommodating the global transfer of data that occurs in GSA, however it can also act as an entirely black-box module so is generally applicable. This newly developed 3S method has been shown to be efficient and effective at optimizing a suite of constrained analytical test functions using GSA.</abstract><pub>IEEE</pub><doi>10.1109/CEC.2014.6900270</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1089-778X |
ispartof | 2014 IEEE Congress on Evolutionary Computation (CEC), 2014, p.998-1005 |
issn | 1089-778X 1941-0026 |
language | eng |
recordid | cdi_ieee_primary_6900270 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithm design and analysis Educational institutions Heuristic algorithms Linear programming Optimization Particle swarm optimization Search problems |
title | Constraint handling in agent-based optimization by independent sub-swarms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T11%3A20%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Constraint%20handling%20in%20agent-based%20optimization%20by%20independent%20sub-swarms&rft.btitle=2014%20IEEE%20Congress%20on%20Evolutionary%20Computation%20(CEC)&rft.au=Poole,%20Daniel%20J.&rft.date=2014-07&rft.spage=998&rft.epage=1005&rft.pages=998-1005&rft.issn=1089-778X&rft.eissn=1941-0026&rft_id=info:doi/10.1109/CEC.2014.6900270&rft_dat=%3Cieee_RIE%3E6900270%3C/ieee_RIE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781479914883&rft.eisbn_list=1479966266&rft.eisbn_list=9781479966264&rft.eisbn_list=1479914886&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6900270&rfr_iscdi=true |