Three-Dimensional 128 Gb MLC Vertical nand Flash Memory With 24-WL Stacked Layers and 50 MB/s High-Speed Programming
In this work, we present a true 3D 128 Gb 2 bit/cell vertical-NAND (V-NAND) Flash product for the first time. The use of barrier-engineered materials and gate all-around structure in the 3D V-NAND cell exhibits advantages over 1 × nm planar NAND, such as small Vth shift due to small cell coupling an...
Gespeichert in:
Veröffentlicht in: | IEEE journal of solid-state circuits 2015-01, Vol.50 (1), p.204-213 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this work, we present a true 3D 128 Gb 2 bit/cell vertical-NAND (V-NAND) Flash product for the first time. The use of barrier-engineered materials and gate all-around structure in the 3D V-NAND cell exhibits advantages over 1 × nm planar NAND, such as small Vth shift due to small cell coupling and narrow natural Vth distribution. Also, a negative counter-pulse scheme realizes a tightly programmed cell distribution. In order to reduce the effect of a large WL coupling, a glitch-canceling discharge scheme and a pre-offset control scheme is implemented. Furthermore, an external high-voltage supply scheme along with the proper protection scheme for a high-voltage failure is used to achieve low power consumption. The chip accomplishes 50 MB/s write throughput with 3 K endurance for typical embedded applications. Also, extended endurance of 35 K is achieved with 36 MB/s of write throughput for data center and enterprise SSD applications. |
---|---|
ISSN: | 0018-9200 1558-173X |
DOI: | 10.1109/JSSC.2014.2352293 |