End-to-End Delay Minimization for Scientific Workflows in Clouds under Budget Constraint

Next-generation e-Science features large-scale, compute-intensive workflows of many computing modules that are typically executed in a distributed manner. With the recent emergence of cloud computing and the rapid deployment of cloud infrastructures, an increasing number of scientific workflows have...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on cloud computing 2015-04, Vol.3 (2), p.169-181
Hauptverfasser: Wu, Chase Qishi, Lin, Xiangyu, Yu, Dantong, Xu, Wei, Li, Li
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 181
container_issue 2
container_start_page 169
container_title IEEE transactions on cloud computing
container_volume 3
creator Wu, Chase Qishi
Lin, Xiangyu
Yu, Dantong
Xu, Wei
Li, Li
description Next-generation e-Science features large-scale, compute-intensive workflows of many computing modules that are typically executed in a distributed manner. With the recent emergence of cloud computing and the rapid deployment of cloud infrastructures, an increasing number of scientific workflows have been shifted or are in active transition to cloud environments. As cloud computing makes computing a utility, scientists across different application domains are facing the same challenge of reducing financial cost in addition to meeting the traditional goal of performance optimization. We develop a prototype generic workflow system by leveraging existing technologies for a quick evaluation of scientific workflow optimization strategies. We construct analytical models to quantify the network performance of scientific workflows using cloud-based computing resources, and formulate a task scheduling problem to minimize the workflow end-to-end delay under a user-specified financial constraint. We rigorously prove that the proposed problem is not only NP-complete but also non-approximable. We design a heuristic solution to this problem, and illustrate its performance superiority over existing methods through extensive simulations and real-life workflow experiments based on proof-of-concept implementation and deployment in a local cloud testbed.
doi_str_mv 10.1109/TCC.2014.2358220
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_6898826</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6898826</ieee_id><sourcerecordid>3931742841</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-9a6725e2d08ef9fb748fab94170d22a94e361653e4edb9271b1fb57a070968913</originalsourceid><addsrcrecordid>eNpNkM1LwzAYxosoOObugpeA5868aZuPo9b5ARMPTvQW0jaRzC2ZSYrMv96ODfG9PO_h-YBflp0DngJgcbWo6ynBUE5JUXFC8FE2IkB5zoDC8b__NJvEuMTD8QoEiFH2PnNdnnw-CLrVK7VFT9bZtf1RyXqHjA_opbXaJWtsi958-DQr_x2Rdahe-b6LqHedDuim7z50QrV3MQVlXTrLToxaRT056Dh7vZst6od8_nz_WF_P87aoWMqFooxUmnSYayNMw0puVCNKYLgjRIlSFxRoVehSd40gDBowTcUUZlhQLqAYZ5f73k3wX72OSS59H9wwKYFVoig543Rw4b2rDT7GoI3cBLtWYSsByx1COSCUO4TygHCIXOwjVmv9Zx82OSe0-AVui2ui</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1759348786</pqid></control><display><type>article</type><title>End-to-End Delay Minimization for Scientific Workflows in Clouds under Budget Constraint</title><source>IEEE Electronic Library (IEL)</source><creator>Wu, Chase Qishi ; Lin, Xiangyu ; Yu, Dantong ; Xu, Wei ; Li, Li</creator><creatorcontrib>Wu, Chase Qishi ; Lin, Xiangyu ; Yu, Dantong ; Xu, Wei ; Li, Li</creatorcontrib><description>Next-generation e-Science features large-scale, compute-intensive workflows of many computing modules that are typically executed in a distributed manner. With the recent emergence of cloud computing and the rapid deployment of cloud infrastructures, an increasing number of scientific workflows have been shifted or are in active transition to cloud environments. As cloud computing makes computing a utility, scientists across different application domains are facing the same challenge of reducing financial cost in addition to meeting the traditional goal of performance optimization. We develop a prototype generic workflow system by leveraging existing technologies for a quick evaluation of scientific workflow optimization strategies. We construct analytical models to quantify the network performance of scientific workflows using cloud-based computing resources, and formulate a task scheduling problem to minimize the workflow end-to-end delay under a user-specified financial constraint. We rigorously prove that the proposed problem is not only NP-complete but also non-approximable. We design a heuristic solution to this problem, and illustrate its performance superiority over existing methods through extensive simulations and real-life workflow experiments based on proof-of-concept implementation and deployment in a local cloud testbed.</description><identifier>ISSN: 2168-7161</identifier><identifier>EISSN: 2168-7161</identifier><identifier>EISSN: 2372-0018</identifier><identifier>DOI: 10.1109/TCC.2014.2358220</identifier><identifier>CODEN: ITCCF6</identifier><language>eng</language><publisher>Piscataway: IEEE Computer Society</publisher><subject>Cloud computing ; Data transfer ; Delays ; Processor scheduling ; Prototypes ; Schedules ; Virtual machining</subject><ispartof>IEEE transactions on cloud computing, 2015-04, Vol.3 (2), p.169-181</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Apr-Jun 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-9a6725e2d08ef9fb748fab94170d22a94e361653e4edb9271b1fb57a070968913</citedby><cites>FETCH-LOGICAL-c357t-9a6725e2d08ef9fb748fab94170d22a94e361653e4edb9271b1fb57a070968913</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6898826$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6898826$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wu, Chase Qishi</creatorcontrib><creatorcontrib>Lin, Xiangyu</creatorcontrib><creatorcontrib>Yu, Dantong</creatorcontrib><creatorcontrib>Xu, Wei</creatorcontrib><creatorcontrib>Li, Li</creatorcontrib><title>End-to-End Delay Minimization for Scientific Workflows in Clouds under Budget Constraint</title><title>IEEE transactions on cloud computing</title><addtitle>TCC</addtitle><description>Next-generation e-Science features large-scale, compute-intensive workflows of many computing modules that are typically executed in a distributed manner. With the recent emergence of cloud computing and the rapid deployment of cloud infrastructures, an increasing number of scientific workflows have been shifted or are in active transition to cloud environments. As cloud computing makes computing a utility, scientists across different application domains are facing the same challenge of reducing financial cost in addition to meeting the traditional goal of performance optimization. We develop a prototype generic workflow system by leveraging existing technologies for a quick evaluation of scientific workflow optimization strategies. We construct analytical models to quantify the network performance of scientific workflows using cloud-based computing resources, and formulate a task scheduling problem to minimize the workflow end-to-end delay under a user-specified financial constraint. We rigorously prove that the proposed problem is not only NP-complete but also non-approximable. We design a heuristic solution to this problem, and illustrate its performance superiority over existing methods through extensive simulations and real-life workflow experiments based on proof-of-concept implementation and deployment in a local cloud testbed.</description><subject>Cloud computing</subject><subject>Data transfer</subject><subject>Delays</subject><subject>Processor scheduling</subject><subject>Prototypes</subject><subject>Schedules</subject><subject>Virtual machining</subject><issn>2168-7161</issn><issn>2168-7161</issn><issn>2372-0018</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM1LwzAYxosoOObugpeA5868aZuPo9b5ARMPTvQW0jaRzC2ZSYrMv96ODfG9PO_h-YBflp0DngJgcbWo6ynBUE5JUXFC8FE2IkB5zoDC8b__NJvEuMTD8QoEiFH2PnNdnnw-CLrVK7VFT9bZtf1RyXqHjA_opbXaJWtsi958-DQr_x2Rdahe-b6LqHedDuim7z50QrV3MQVlXTrLToxaRT056Dh7vZst6od8_nz_WF_P87aoWMqFooxUmnSYayNMw0puVCNKYLgjRIlSFxRoVehSd40gDBowTcUUZlhQLqAYZ5f73k3wX72OSS59H9wwKYFVoig543Rw4b2rDT7GoI3cBLtWYSsByx1COSCUO4TygHCIXOwjVmv9Zx82OSe0-AVui2ui</recordid><startdate>201504</startdate><enddate>201504</enddate><creator>Wu, Chase Qishi</creator><creator>Lin, Xiangyu</creator><creator>Yu, Dantong</creator><creator>Xu, Wei</creator><creator>Li, Li</creator><general>IEEE Computer Society</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201504</creationdate><title>End-to-End Delay Minimization for Scientific Workflows in Clouds under Budget Constraint</title><author>Wu, Chase Qishi ; Lin, Xiangyu ; Yu, Dantong ; Xu, Wei ; Li, Li</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-9a6725e2d08ef9fb748fab94170d22a94e361653e4edb9271b1fb57a070968913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Cloud computing</topic><topic>Data transfer</topic><topic>Delays</topic><topic>Processor scheduling</topic><topic>Prototypes</topic><topic>Schedules</topic><topic>Virtual machining</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Chase Qishi</creatorcontrib><creatorcontrib>Lin, Xiangyu</creatorcontrib><creatorcontrib>Yu, Dantong</creatorcontrib><creatorcontrib>Xu, Wei</creatorcontrib><creatorcontrib>Li, Li</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on cloud computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wu, Chase Qishi</au><au>Lin, Xiangyu</au><au>Yu, Dantong</au><au>Xu, Wei</au><au>Li, Li</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>End-to-End Delay Minimization for Scientific Workflows in Clouds under Budget Constraint</atitle><jtitle>IEEE transactions on cloud computing</jtitle><stitle>TCC</stitle><date>2015-04</date><risdate>2015</risdate><volume>3</volume><issue>2</issue><spage>169</spage><epage>181</epage><pages>169-181</pages><issn>2168-7161</issn><eissn>2168-7161</eissn><eissn>2372-0018</eissn><coden>ITCCF6</coden><abstract>Next-generation e-Science features large-scale, compute-intensive workflows of many computing modules that are typically executed in a distributed manner. With the recent emergence of cloud computing and the rapid deployment of cloud infrastructures, an increasing number of scientific workflows have been shifted or are in active transition to cloud environments. As cloud computing makes computing a utility, scientists across different application domains are facing the same challenge of reducing financial cost in addition to meeting the traditional goal of performance optimization. We develop a prototype generic workflow system by leveraging existing technologies for a quick evaluation of scientific workflow optimization strategies. We construct analytical models to quantify the network performance of scientific workflows using cloud-based computing resources, and formulate a task scheduling problem to minimize the workflow end-to-end delay under a user-specified financial constraint. We rigorously prove that the proposed problem is not only NP-complete but also non-approximable. We design a heuristic solution to this problem, and illustrate its performance superiority over existing methods through extensive simulations and real-life workflow experiments based on proof-of-concept implementation and deployment in a local cloud testbed.</abstract><cop>Piscataway</cop><pub>IEEE Computer Society</pub><doi>10.1109/TCC.2014.2358220</doi><tpages>13</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2168-7161
ispartof IEEE transactions on cloud computing, 2015-04, Vol.3 (2), p.169-181
issn 2168-7161
2168-7161
2372-0018
language eng
recordid cdi_ieee_primary_6898826
source IEEE Electronic Library (IEL)
subjects Cloud computing
Data transfer
Delays
Processor scheduling
Prototypes
Schedules
Virtual machining
title End-to-End Delay Minimization for Scientific Workflows in Clouds under Budget Constraint
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T11%3A10%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=End-to-End%20Delay%20Minimization%20for%20Scientific%20Workflows%20in%20Clouds%20under%20Budget%20Constraint&rft.jtitle=IEEE%20transactions%20on%20cloud%20computing&rft.au=Wu,%20Chase%20Qishi&rft.date=2015-04&rft.volume=3&rft.issue=2&rft.spage=169&rft.epage=181&rft.pages=169-181&rft.issn=2168-7161&rft.eissn=2168-7161&rft.coden=ITCCF6&rft_id=info:doi/10.1109/TCC.2014.2358220&rft_dat=%3Cproquest_RIE%3E3931742841%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1759348786&rft_id=info:pmid/&rft_ieee_id=6898826&rfr_iscdi=true