Probabilistic Method for Optimizing the Number and Timing of Substation Spare Transformers

This paper proposes a new probabilistic method based on chronological Monte Carlo simulation for computing optimal distribution substation spare transformers. The method allows the representation of events such as aging process, load growth, and other conditions not supported by traditional methods...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power systems 2015-07, Vol.30 (4), p.2004-2012
Hauptverfasser: Martins Leite da Silva, Armando, Guilherme de Carvalho Costa, Joao, Goncalves Machado, Kascilene, Labarrere de Souza, Leonardo, Gonzalez-Fernandez, Reinaldo Andres
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2012
container_issue 4
container_start_page 2004
container_title IEEE transactions on power systems
container_volume 30
creator Martins Leite da Silva, Armando
Guilherme de Carvalho Costa, Joao
Goncalves Machado, Kascilene
Labarrere de Souza, Leonardo
Gonzalez-Fernandez, Reinaldo Andres
description This paper proposes a new probabilistic method based on chronological Monte Carlo simulation for computing optimal distribution substation spare transformers. The method allows the representation of events such as aging process, load growth, and other conditions not supported by traditional methods based on Poisson and Markov processes. The lifetimes of the transformers are represented by discrete probability distributions, determined by an algorithm that combines the aging of the insulating material, estimated by Arrhenius theory, with the loss of life caused by short-circuits, lightning and switching surges. To illustrate the importance of sizing the inventory based on reliability indices and costs, the proposed method is applied to a group of substations with 177 transformers of 138-13.8 kV, with power rating of 25 MVA. Finally, the proposed methodology is used in combination with a metaheuristic algorithm for determining the optimal timing strategy for composing of the stock of spare transformers over a pre-established planning horizon.
doi_str_mv 10.1109/TPWRS.2014.2349851
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_6894634</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6894634</ieee_id><sourcerecordid>10_1109_TPWRS_2014_2349851</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-7b24c29a16fb684211e8222793a5761315816de3b5ca9482901d82dbf7e116c53</originalsourceid><addsrcrecordid>eNo9kN9KwzAchYMoOKcvoDd5gc788q_JpQx1wnTDVQRvStKmLrK2I8ku9Ont3PDqwDl85-JD6BrIBIDo22L5_rqaUAJ8QhnXSsAJGoEQKiMy16doRJQSmdKCnKOLGL8IIXIYRuhjGXprrN_4mHyFn11a9zVu-oAX2-Rb_-O7T5zWDr_sWusCNl2Ni6Ef2r7Bq52NySTfd3i1NcHhIpguDnTrQrxEZ43ZRHd1zDF6e7gvprNsvnh8mt7Ns4qTPGW5pbyi2oBsrFScAjhFKc01MyKXwEAokLVjVlRGc0U1gVrR2ja5A5CVYGNED79V6GMMrim3wbcmfJdAyr2d8s9OubdTHu0M0M0B8s65f0AqzSXj7BdOIGGM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Probabilistic Method for Optimizing the Number and Timing of Substation Spare Transformers</title><source>IEEE Electronic Library (IEL)</source><creator>Martins Leite da Silva, Armando ; Guilherme de Carvalho Costa, Joao ; Goncalves Machado, Kascilene ; Labarrere de Souza, Leonardo ; Gonzalez-Fernandez, Reinaldo Andres</creator><creatorcontrib>Martins Leite da Silva, Armando ; Guilherme de Carvalho Costa, Joao ; Goncalves Machado, Kascilene ; Labarrere de Souza, Leonardo ; Gonzalez-Fernandez, Reinaldo Andres</creatorcontrib><description>This paper proposes a new probabilistic method based on chronological Monte Carlo simulation for computing optimal distribution substation spare transformers. The method allows the representation of events such as aging process, load growth, and other conditions not supported by traditional methods based on Poisson and Markov processes. The lifetimes of the transformers are represented by discrete probability distributions, determined by an algorithm that combines the aging of the insulating material, estimated by Arrhenius theory, with the loss of life caused by short-circuits, lightning and switching surges. To illustrate the importance of sizing the inventory based on reliability indices and costs, the proposed method is applied to a group of substations with 177 transformers of 138-13.8 kV, with power rating of 25 MVA. Finally, the proposed methodology is used in combination with a metaheuristic algorithm for determining the optimal timing strategy for composing of the stock of spare transformers over a pre-established planning horizon.</description><identifier>ISSN: 0885-8950</identifier><identifier>EISSN: 1558-0679</identifier><identifier>DOI: 10.1109/TPWRS.2014.2349851</identifier><identifier>CODEN: ITPSEG</identifier><language>eng</language><publisher>IEEE</publisher><subject>Aging ; Current transformers ; Histograms ; Load modeling ; Metaheuristics ; Monte Carlo simulation ; optimization ; Power transformer insulation ; probabilistic cost analysis ; Reliability ; spare transformers ; Substations</subject><ispartof>IEEE transactions on power systems, 2015-07, Vol.30 (4), p.2004-2012</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-7b24c29a16fb684211e8222793a5761315816de3b5ca9482901d82dbf7e116c53</citedby><cites>FETCH-LOGICAL-c407t-7b24c29a16fb684211e8222793a5761315816de3b5ca9482901d82dbf7e116c53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6894634$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6894634$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Martins Leite da Silva, Armando</creatorcontrib><creatorcontrib>Guilherme de Carvalho Costa, Joao</creatorcontrib><creatorcontrib>Goncalves Machado, Kascilene</creatorcontrib><creatorcontrib>Labarrere de Souza, Leonardo</creatorcontrib><creatorcontrib>Gonzalez-Fernandez, Reinaldo Andres</creatorcontrib><title>Probabilistic Method for Optimizing the Number and Timing of Substation Spare Transformers</title><title>IEEE transactions on power systems</title><addtitle>TPWRS</addtitle><description>This paper proposes a new probabilistic method based on chronological Monte Carlo simulation for computing optimal distribution substation spare transformers. The method allows the representation of events such as aging process, load growth, and other conditions not supported by traditional methods based on Poisson and Markov processes. The lifetimes of the transformers are represented by discrete probability distributions, determined by an algorithm that combines the aging of the insulating material, estimated by Arrhenius theory, with the loss of life caused by short-circuits, lightning and switching surges. To illustrate the importance of sizing the inventory based on reliability indices and costs, the proposed method is applied to a group of substations with 177 transformers of 138-13.8 kV, with power rating of 25 MVA. Finally, the proposed methodology is used in combination with a metaheuristic algorithm for determining the optimal timing strategy for composing of the stock of spare transformers over a pre-established planning horizon.</description><subject>Aging</subject><subject>Current transformers</subject><subject>Histograms</subject><subject>Load modeling</subject><subject>Metaheuristics</subject><subject>Monte Carlo simulation</subject><subject>optimization</subject><subject>Power transformer insulation</subject><subject>probabilistic cost analysis</subject><subject>Reliability</subject><subject>spare transformers</subject><subject>Substations</subject><issn>0885-8950</issn><issn>1558-0679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kN9KwzAchYMoOKcvoDd5gc788q_JpQx1wnTDVQRvStKmLrK2I8ku9Ont3PDqwDl85-JD6BrIBIDo22L5_rqaUAJ8QhnXSsAJGoEQKiMy16doRJQSmdKCnKOLGL8IIXIYRuhjGXprrN_4mHyFn11a9zVu-oAX2-Rb_-O7T5zWDr_sWusCNl2Ni6Ef2r7Bq52NySTfd3i1NcHhIpguDnTrQrxEZ43ZRHd1zDF6e7gvprNsvnh8mt7Ns4qTPGW5pbyi2oBsrFScAjhFKc01MyKXwEAokLVjVlRGc0U1gVrR2ja5A5CVYGNED79V6GMMrim3wbcmfJdAyr2d8s9OubdTHu0M0M0B8s65f0AqzSXj7BdOIGGM</recordid><startdate>20150701</startdate><enddate>20150701</enddate><creator>Martins Leite da Silva, Armando</creator><creator>Guilherme de Carvalho Costa, Joao</creator><creator>Goncalves Machado, Kascilene</creator><creator>Labarrere de Souza, Leonardo</creator><creator>Gonzalez-Fernandez, Reinaldo Andres</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20150701</creationdate><title>Probabilistic Method for Optimizing the Number and Timing of Substation Spare Transformers</title><author>Martins Leite da Silva, Armando ; Guilherme de Carvalho Costa, Joao ; Goncalves Machado, Kascilene ; Labarrere de Souza, Leonardo ; Gonzalez-Fernandez, Reinaldo Andres</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-7b24c29a16fb684211e8222793a5761315816de3b5ca9482901d82dbf7e116c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Aging</topic><topic>Current transformers</topic><topic>Histograms</topic><topic>Load modeling</topic><topic>Metaheuristics</topic><topic>Monte Carlo simulation</topic><topic>optimization</topic><topic>Power transformer insulation</topic><topic>probabilistic cost analysis</topic><topic>Reliability</topic><topic>spare transformers</topic><topic>Substations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martins Leite da Silva, Armando</creatorcontrib><creatorcontrib>Guilherme de Carvalho Costa, Joao</creatorcontrib><creatorcontrib>Goncalves Machado, Kascilene</creatorcontrib><creatorcontrib>Labarrere de Souza, Leonardo</creatorcontrib><creatorcontrib>Gonzalez-Fernandez, Reinaldo Andres</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on power systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Martins Leite da Silva, Armando</au><au>Guilherme de Carvalho Costa, Joao</au><au>Goncalves Machado, Kascilene</au><au>Labarrere de Souza, Leonardo</au><au>Gonzalez-Fernandez, Reinaldo Andres</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Probabilistic Method for Optimizing the Number and Timing of Substation Spare Transformers</atitle><jtitle>IEEE transactions on power systems</jtitle><stitle>TPWRS</stitle><date>2015-07-01</date><risdate>2015</risdate><volume>30</volume><issue>4</issue><spage>2004</spage><epage>2012</epage><pages>2004-2012</pages><issn>0885-8950</issn><eissn>1558-0679</eissn><coden>ITPSEG</coden><abstract>This paper proposes a new probabilistic method based on chronological Monte Carlo simulation for computing optimal distribution substation spare transformers. The method allows the representation of events such as aging process, load growth, and other conditions not supported by traditional methods based on Poisson and Markov processes. The lifetimes of the transformers are represented by discrete probability distributions, determined by an algorithm that combines the aging of the insulating material, estimated by Arrhenius theory, with the loss of life caused by short-circuits, lightning and switching surges. To illustrate the importance of sizing the inventory based on reliability indices and costs, the proposed method is applied to a group of substations with 177 transformers of 138-13.8 kV, with power rating of 25 MVA. Finally, the proposed methodology is used in combination with a metaheuristic algorithm for determining the optimal timing strategy for composing of the stock of spare transformers over a pre-established planning horizon.</abstract><pub>IEEE</pub><doi>10.1109/TPWRS.2014.2349851</doi><tpages>9</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-8950
ispartof IEEE transactions on power systems, 2015-07, Vol.30 (4), p.2004-2012
issn 0885-8950
1558-0679
language eng
recordid cdi_ieee_primary_6894634
source IEEE Electronic Library (IEL)
subjects Aging
Current transformers
Histograms
Load modeling
Metaheuristics
Monte Carlo simulation
optimization
Power transformer insulation
probabilistic cost analysis
Reliability
spare transformers
Substations
title Probabilistic Method for Optimizing the Number and Timing of Substation Spare Transformers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T11%3A14%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Probabilistic%20Method%20for%20Optimizing%20the%20Number%20and%20Timing%20of%20Substation%20Spare%20Transformers&rft.jtitle=IEEE%20transactions%20on%20power%20systems&rft.au=Martins%20Leite%20da%20Silva,%20Armando&rft.date=2015-07-01&rft.volume=30&rft.issue=4&rft.spage=2004&rft.epage=2012&rft.pages=2004-2012&rft.issn=0885-8950&rft.eissn=1558-0679&rft.coden=ITPSEG&rft_id=info:doi/10.1109/TPWRS.2014.2349851&rft_dat=%3Ccrossref_RIE%3E10_1109_TPWRS_2014_2349851%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6894634&rfr_iscdi=true