Probabilistic Method for Optimizing the Number and Timing of Substation Spare Transformers
This paper proposes a new probabilistic method based on chronological Monte Carlo simulation for computing optimal distribution substation spare transformers. The method allows the representation of events such as aging process, load growth, and other conditions not supported by traditional methods...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on power systems 2015-07, Vol.30 (4), p.2004-2012 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2012 |
---|---|
container_issue | 4 |
container_start_page | 2004 |
container_title | IEEE transactions on power systems |
container_volume | 30 |
creator | Martins Leite da Silva, Armando Guilherme de Carvalho Costa, Joao Goncalves Machado, Kascilene Labarrere de Souza, Leonardo Gonzalez-Fernandez, Reinaldo Andres |
description | This paper proposes a new probabilistic method based on chronological Monte Carlo simulation for computing optimal distribution substation spare transformers. The method allows the representation of events such as aging process, load growth, and other conditions not supported by traditional methods based on Poisson and Markov processes. The lifetimes of the transformers are represented by discrete probability distributions, determined by an algorithm that combines the aging of the insulating material, estimated by Arrhenius theory, with the loss of life caused by short-circuits, lightning and switching surges. To illustrate the importance of sizing the inventory based on reliability indices and costs, the proposed method is applied to a group of substations with 177 transformers of 138-13.8 kV, with power rating of 25 MVA. Finally, the proposed methodology is used in combination with a metaheuristic algorithm for determining the optimal timing strategy for composing of the stock of spare transformers over a pre-established planning horizon. |
doi_str_mv | 10.1109/TPWRS.2014.2349851 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_6894634</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6894634</ieee_id><sourcerecordid>10_1109_TPWRS_2014_2349851</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-7b24c29a16fb684211e8222793a5761315816de3b5ca9482901d82dbf7e116c53</originalsourceid><addsrcrecordid>eNo9kN9KwzAchYMoOKcvoDd5gc788q_JpQx1wnTDVQRvStKmLrK2I8ku9Ont3PDqwDl85-JD6BrIBIDo22L5_rqaUAJ8QhnXSsAJGoEQKiMy16doRJQSmdKCnKOLGL8IIXIYRuhjGXprrN_4mHyFn11a9zVu-oAX2-Rb_-O7T5zWDr_sWusCNl2Ni6Ef2r7Bq52NySTfd3i1NcHhIpguDnTrQrxEZ43ZRHd1zDF6e7gvprNsvnh8mt7Ns4qTPGW5pbyi2oBsrFScAjhFKc01MyKXwEAokLVjVlRGc0U1gVrR2ja5A5CVYGNED79V6GMMrim3wbcmfJdAyr2d8s9OubdTHu0M0M0B8s65f0AqzSXj7BdOIGGM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Probabilistic Method for Optimizing the Number and Timing of Substation Spare Transformers</title><source>IEEE Electronic Library (IEL)</source><creator>Martins Leite da Silva, Armando ; Guilherme de Carvalho Costa, Joao ; Goncalves Machado, Kascilene ; Labarrere de Souza, Leonardo ; Gonzalez-Fernandez, Reinaldo Andres</creator><creatorcontrib>Martins Leite da Silva, Armando ; Guilherme de Carvalho Costa, Joao ; Goncalves Machado, Kascilene ; Labarrere de Souza, Leonardo ; Gonzalez-Fernandez, Reinaldo Andres</creatorcontrib><description>This paper proposes a new probabilistic method based on chronological Monte Carlo simulation for computing optimal distribution substation spare transformers. The method allows the representation of events such as aging process, load growth, and other conditions not supported by traditional methods based on Poisson and Markov processes. The lifetimes of the transformers are represented by discrete probability distributions, determined by an algorithm that combines the aging of the insulating material, estimated by Arrhenius theory, with the loss of life caused by short-circuits, lightning and switching surges. To illustrate the importance of sizing the inventory based on reliability indices and costs, the proposed method is applied to a group of substations with 177 transformers of 138-13.8 kV, with power rating of 25 MVA. Finally, the proposed methodology is used in combination with a metaheuristic algorithm for determining the optimal timing strategy for composing of the stock of spare transformers over a pre-established planning horizon.</description><identifier>ISSN: 0885-8950</identifier><identifier>EISSN: 1558-0679</identifier><identifier>DOI: 10.1109/TPWRS.2014.2349851</identifier><identifier>CODEN: ITPSEG</identifier><language>eng</language><publisher>IEEE</publisher><subject>Aging ; Current transformers ; Histograms ; Load modeling ; Metaheuristics ; Monte Carlo simulation ; optimization ; Power transformer insulation ; probabilistic cost analysis ; Reliability ; spare transformers ; Substations</subject><ispartof>IEEE transactions on power systems, 2015-07, Vol.30 (4), p.2004-2012</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-7b24c29a16fb684211e8222793a5761315816de3b5ca9482901d82dbf7e116c53</citedby><cites>FETCH-LOGICAL-c407t-7b24c29a16fb684211e8222793a5761315816de3b5ca9482901d82dbf7e116c53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6894634$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6894634$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Martins Leite da Silva, Armando</creatorcontrib><creatorcontrib>Guilherme de Carvalho Costa, Joao</creatorcontrib><creatorcontrib>Goncalves Machado, Kascilene</creatorcontrib><creatorcontrib>Labarrere de Souza, Leonardo</creatorcontrib><creatorcontrib>Gonzalez-Fernandez, Reinaldo Andres</creatorcontrib><title>Probabilistic Method for Optimizing the Number and Timing of Substation Spare Transformers</title><title>IEEE transactions on power systems</title><addtitle>TPWRS</addtitle><description>This paper proposes a new probabilistic method based on chronological Monte Carlo simulation for computing optimal distribution substation spare transformers. The method allows the representation of events such as aging process, load growth, and other conditions not supported by traditional methods based on Poisson and Markov processes. The lifetimes of the transformers are represented by discrete probability distributions, determined by an algorithm that combines the aging of the insulating material, estimated by Arrhenius theory, with the loss of life caused by short-circuits, lightning and switching surges. To illustrate the importance of sizing the inventory based on reliability indices and costs, the proposed method is applied to a group of substations with 177 transformers of 138-13.8 kV, with power rating of 25 MVA. Finally, the proposed methodology is used in combination with a metaheuristic algorithm for determining the optimal timing strategy for composing of the stock of spare transformers over a pre-established planning horizon.</description><subject>Aging</subject><subject>Current transformers</subject><subject>Histograms</subject><subject>Load modeling</subject><subject>Metaheuristics</subject><subject>Monte Carlo simulation</subject><subject>optimization</subject><subject>Power transformer insulation</subject><subject>probabilistic cost analysis</subject><subject>Reliability</subject><subject>spare transformers</subject><subject>Substations</subject><issn>0885-8950</issn><issn>1558-0679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kN9KwzAchYMoOKcvoDd5gc788q_JpQx1wnTDVQRvStKmLrK2I8ku9Ont3PDqwDl85-JD6BrIBIDo22L5_rqaUAJ8QhnXSsAJGoEQKiMy16doRJQSmdKCnKOLGL8IIXIYRuhjGXprrN_4mHyFn11a9zVu-oAX2-Rb_-O7T5zWDr_sWusCNl2Ni6Ef2r7Bq52NySTfd3i1NcHhIpguDnTrQrxEZ43ZRHd1zDF6e7gvprNsvnh8mt7Ns4qTPGW5pbyi2oBsrFScAjhFKc01MyKXwEAokLVjVlRGc0U1gVrR2ja5A5CVYGNED79V6GMMrim3wbcmfJdAyr2d8s9OubdTHu0M0M0B8s65f0AqzSXj7BdOIGGM</recordid><startdate>20150701</startdate><enddate>20150701</enddate><creator>Martins Leite da Silva, Armando</creator><creator>Guilherme de Carvalho Costa, Joao</creator><creator>Goncalves Machado, Kascilene</creator><creator>Labarrere de Souza, Leonardo</creator><creator>Gonzalez-Fernandez, Reinaldo Andres</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20150701</creationdate><title>Probabilistic Method for Optimizing the Number and Timing of Substation Spare Transformers</title><author>Martins Leite da Silva, Armando ; Guilherme de Carvalho Costa, Joao ; Goncalves Machado, Kascilene ; Labarrere de Souza, Leonardo ; Gonzalez-Fernandez, Reinaldo Andres</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-7b24c29a16fb684211e8222793a5761315816de3b5ca9482901d82dbf7e116c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Aging</topic><topic>Current transformers</topic><topic>Histograms</topic><topic>Load modeling</topic><topic>Metaheuristics</topic><topic>Monte Carlo simulation</topic><topic>optimization</topic><topic>Power transformer insulation</topic><topic>probabilistic cost analysis</topic><topic>Reliability</topic><topic>spare transformers</topic><topic>Substations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martins Leite da Silva, Armando</creatorcontrib><creatorcontrib>Guilherme de Carvalho Costa, Joao</creatorcontrib><creatorcontrib>Goncalves Machado, Kascilene</creatorcontrib><creatorcontrib>Labarrere de Souza, Leonardo</creatorcontrib><creatorcontrib>Gonzalez-Fernandez, Reinaldo Andres</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on power systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Martins Leite da Silva, Armando</au><au>Guilherme de Carvalho Costa, Joao</au><au>Goncalves Machado, Kascilene</au><au>Labarrere de Souza, Leonardo</au><au>Gonzalez-Fernandez, Reinaldo Andres</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Probabilistic Method for Optimizing the Number and Timing of Substation Spare Transformers</atitle><jtitle>IEEE transactions on power systems</jtitle><stitle>TPWRS</stitle><date>2015-07-01</date><risdate>2015</risdate><volume>30</volume><issue>4</issue><spage>2004</spage><epage>2012</epage><pages>2004-2012</pages><issn>0885-8950</issn><eissn>1558-0679</eissn><coden>ITPSEG</coden><abstract>This paper proposes a new probabilistic method based on chronological Monte Carlo simulation for computing optimal distribution substation spare transformers. The method allows the representation of events such as aging process, load growth, and other conditions not supported by traditional methods based on Poisson and Markov processes. The lifetimes of the transformers are represented by discrete probability distributions, determined by an algorithm that combines the aging of the insulating material, estimated by Arrhenius theory, with the loss of life caused by short-circuits, lightning and switching surges. To illustrate the importance of sizing the inventory based on reliability indices and costs, the proposed method is applied to a group of substations with 177 transformers of 138-13.8 kV, with power rating of 25 MVA. Finally, the proposed methodology is used in combination with a metaheuristic algorithm for determining the optimal timing strategy for composing of the stock of spare transformers over a pre-established planning horizon.</abstract><pub>IEEE</pub><doi>10.1109/TPWRS.2014.2349851</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0885-8950 |
ispartof | IEEE transactions on power systems, 2015-07, Vol.30 (4), p.2004-2012 |
issn | 0885-8950 1558-0679 |
language | eng |
recordid | cdi_ieee_primary_6894634 |
source | IEEE Electronic Library (IEL) |
subjects | Aging Current transformers Histograms Load modeling Metaheuristics Monte Carlo simulation optimization Power transformer insulation probabilistic cost analysis Reliability spare transformers Substations |
title | Probabilistic Method for Optimizing the Number and Timing of Substation Spare Transformers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T11%3A14%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Probabilistic%20Method%20for%20Optimizing%20the%20Number%20and%20Timing%20of%20Substation%20Spare%20Transformers&rft.jtitle=IEEE%20transactions%20on%20power%20systems&rft.au=Martins%20Leite%20da%20Silva,%20Armando&rft.date=2015-07-01&rft.volume=30&rft.issue=4&rft.spage=2004&rft.epage=2012&rft.pages=2004-2012&rft.issn=0885-8950&rft.eissn=1558-0679&rft.coden=ITPSEG&rft_id=info:doi/10.1109/TPWRS.2014.2349851&rft_dat=%3Ccrossref_RIE%3E10_1109_TPWRS_2014_2349851%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6894634&rfr_iscdi=true |