Efficient Maximum Power Point Tracking for a Distributed PV System under Rapidly Changing Environmental Conditions
When conventional maximum power point tracking (MPPT) techniques are required to operate fast under rapidly changing environmental conditions, a large power loss can be caused by slow tracking speed, output power fluctuation, or additionally required ad hoc parameters. This paper proposes a fast and...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on power electronics 2015-08, Vol.30 (8), p.4209-4218 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4218 |
---|---|
container_issue | 8 |
container_start_page | 4209 |
container_title | IEEE transactions on power electronics |
container_volume | 30 |
creator | Yohan Hong Pham, Son N. Taegeun Yoo Kookbyung Chae Kwang-Hyun Baek Yong Sin Kim |
description | When conventional maximum power point tracking (MPPT) techniques are required to operate fast under rapidly changing environmental conditions, a large power loss can be caused by slow tracking speed, output power fluctuation, or additionally required ad hoc parameters. This paper proposes a fast and efficient MPPT technique that minimizes the power loss with the adaptively binary-weighted step (ABWS) followed by the monotonically decreased step (MDS) without causing output power fluctuation or requiring additional ad hoc parameter. The proposed MPPT system for a photovoltaic (PV) module is implemented by a boost converter with a microcontroller unit. The theoretical analysis and the simulation results show that the proposed MPPT provides fast and accurate tracking under rapidly changing environmental conditions. The experimental results based on a distributed PV system demonstrate that the proposed MPPT technique is superior to the conventional perturb and observe (P&O) technique, which reduces the tracking time and the overall power loss by up to 82.95%, 91.51% and 82.46%, 97.71% for two PV modules, respectively. |
doi_str_mv | 10.1109/TPEL.2014.2352314 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_6884809</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6884809</ieee_id><sourcerecordid>3621653481</sourcerecordid><originalsourceid>FETCH-LOGICAL-c425t-b302b972f3e446c609491d38707015a58577db8a175d8452edc1095af7600f13</originalsourceid><addsrcrecordid>eNqNkcFqGzEQhkVoIG7SByi9CHrpZZ2ZlbSSjsFx0oBLTGt6XeRdbapkV3Kl3aR--8o45NBTLzMwfP_AzEfIR4Q5IujLzXq5mpeAfF4yUTLkJ2SGmmMBCPIdmYFSolBaszPyPqVHyKQAnJG47DrXOOtH-s38ccM00HV4sTFXl2ebaJon5x9oFyI19NqlMbrtNNqWrn_SH_s02oFOvs2B72bn2n5PF7-MfzhElv7ZxeCHvNv0dBF860YXfLogp53pk_3w2s_J5ma5WXwtVve3d4urVdHwUozFlkG51bLsmOW8airQXGPLlAQJKIxQQsp2qwxK0SouSts2-RHCdLIC6JCdky_HtbsYfk82jfXgUmP73ngbplSjBAFaVew_0EpKXSGgzujnf9DHMEWf78hUVXIuhFCZwiPVxJBStF29i24wcV8j1Adf9cFXffBVv_rKmU_HjLPWvvGVUlyBZn8BCVmQBA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1662445558</pqid></control><display><type>article</type><title>Efficient Maximum Power Point Tracking for a Distributed PV System under Rapidly Changing Environmental Conditions</title><source>IEEE Electronic Library (IEL)</source><creator>Yohan Hong ; Pham, Son N. ; Taegeun Yoo ; Kookbyung Chae ; Kwang-Hyun Baek ; Yong Sin Kim</creator><creatorcontrib>Yohan Hong ; Pham, Son N. ; Taegeun Yoo ; Kookbyung Chae ; Kwang-Hyun Baek ; Yong Sin Kim</creatorcontrib><description>When conventional maximum power point tracking (MPPT) techniques are required to operate fast under rapidly changing environmental conditions, a large power loss can be caused by slow tracking speed, output power fluctuation, or additionally required ad hoc parameters. This paper proposes a fast and efficient MPPT technique that minimizes the power loss with the adaptively binary-weighted step (ABWS) followed by the monotonically decreased step (MDS) without causing output power fluctuation or requiring additional ad hoc parameter. The proposed MPPT system for a photovoltaic (PV) module is implemented by a boost converter with a microcontroller unit. The theoretical analysis and the simulation results show that the proposed MPPT provides fast and accurate tracking under rapidly changing environmental conditions. The experimental results based on a distributed PV system demonstrate that the proposed MPPT technique is superior to the conventional perturb and observe (P&O) technique, which reduces the tracking time and the overall power loss by up to 82.95%, 91.51% and 82.46%, 97.71% for two PV modules, respectively.</description><identifier>ISSN: 0885-8993</identifier><identifier>EISSN: 1941-0107</identifier><identifier>DOI: 10.1109/TPEL.2014.2352314</identifier><identifier>CODEN: ITPEE8</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Efficiency ; Electric power ; Electrical equipment ; Electronics ; Environmental conditions ; Fluctuation ; Fluctuations ; Inverters ; Maximum power ; Maximum power point trackers ; Modules ; Photovoltaic cells ; Power loss ; Pulse width modulation ; Simulation ; Solar cells ; Steady-state ; Tracking ; Voltage control</subject><ispartof>IEEE transactions on power electronics, 2015-08, Vol.30 (8), p.4209-4218</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Aug 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c425t-b302b972f3e446c609491d38707015a58577db8a175d8452edc1095af7600f13</citedby><cites>FETCH-LOGICAL-c425t-b302b972f3e446c609491d38707015a58577db8a175d8452edc1095af7600f13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6884809$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6884809$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yohan Hong</creatorcontrib><creatorcontrib>Pham, Son N.</creatorcontrib><creatorcontrib>Taegeun Yoo</creatorcontrib><creatorcontrib>Kookbyung Chae</creatorcontrib><creatorcontrib>Kwang-Hyun Baek</creatorcontrib><creatorcontrib>Yong Sin Kim</creatorcontrib><title>Efficient Maximum Power Point Tracking for a Distributed PV System under Rapidly Changing Environmental Conditions</title><title>IEEE transactions on power electronics</title><addtitle>TPEL</addtitle><description>When conventional maximum power point tracking (MPPT) techniques are required to operate fast under rapidly changing environmental conditions, a large power loss can be caused by slow tracking speed, output power fluctuation, or additionally required ad hoc parameters. This paper proposes a fast and efficient MPPT technique that minimizes the power loss with the adaptively binary-weighted step (ABWS) followed by the monotonically decreased step (MDS) without causing output power fluctuation or requiring additional ad hoc parameter. The proposed MPPT system for a photovoltaic (PV) module is implemented by a boost converter with a microcontroller unit. The theoretical analysis and the simulation results show that the proposed MPPT provides fast and accurate tracking under rapidly changing environmental conditions. The experimental results based on a distributed PV system demonstrate that the proposed MPPT technique is superior to the conventional perturb and observe (P&O) technique, which reduces the tracking time and the overall power loss by up to 82.95%, 91.51% and 82.46%, 97.71% for two PV modules, respectively.</description><subject>Efficiency</subject><subject>Electric power</subject><subject>Electrical equipment</subject><subject>Electronics</subject><subject>Environmental conditions</subject><subject>Fluctuation</subject><subject>Fluctuations</subject><subject>Inverters</subject><subject>Maximum power</subject><subject>Maximum power point trackers</subject><subject>Modules</subject><subject>Photovoltaic cells</subject><subject>Power loss</subject><subject>Pulse width modulation</subject><subject>Simulation</subject><subject>Solar cells</subject><subject>Steady-state</subject><subject>Tracking</subject><subject>Voltage control</subject><issn>0885-8993</issn><issn>1941-0107</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqNkcFqGzEQhkVoIG7SByi9CHrpZZ2ZlbSSjsFx0oBLTGt6XeRdbapkV3Kl3aR--8o45NBTLzMwfP_AzEfIR4Q5IujLzXq5mpeAfF4yUTLkJ2SGmmMBCPIdmYFSolBaszPyPqVHyKQAnJG47DrXOOtH-s38ccM00HV4sTFXl2ebaJon5x9oFyI19NqlMbrtNNqWrn_SH_s02oFOvs2B72bn2n5PF7-MfzhElv7ZxeCHvNv0dBF860YXfLogp53pk_3w2s_J5ma5WXwtVve3d4urVdHwUozFlkG51bLsmOW8airQXGPLlAQJKIxQQsp2qwxK0SouSts2-RHCdLIC6JCdky_HtbsYfk82jfXgUmP73ngbplSjBAFaVew_0EpKXSGgzujnf9DHMEWf78hUVXIuhFCZwiPVxJBStF29i24wcV8j1Adf9cFXffBVv_rKmU_HjLPWvvGVUlyBZn8BCVmQBA</recordid><startdate>20150801</startdate><enddate>20150801</enddate><creator>Yohan Hong</creator><creator>Pham, Son N.</creator><creator>Taegeun Yoo</creator><creator>Kookbyung Chae</creator><creator>Kwang-Hyun Baek</creator><creator>Yong Sin Kim</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>F28</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope></search><sort><creationdate>20150801</creationdate><title>Efficient Maximum Power Point Tracking for a Distributed PV System under Rapidly Changing Environmental Conditions</title><author>Yohan Hong ; Pham, Son N. ; Taegeun Yoo ; Kookbyung Chae ; Kwang-Hyun Baek ; Yong Sin Kim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c425t-b302b972f3e446c609491d38707015a58577db8a175d8452edc1095af7600f13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Efficiency</topic><topic>Electric power</topic><topic>Electrical equipment</topic><topic>Electronics</topic><topic>Environmental conditions</topic><topic>Fluctuation</topic><topic>Fluctuations</topic><topic>Inverters</topic><topic>Maximum power</topic><topic>Maximum power point trackers</topic><topic>Modules</topic><topic>Photovoltaic cells</topic><topic>Power loss</topic><topic>Pulse width modulation</topic><topic>Simulation</topic><topic>Solar cells</topic><topic>Steady-state</topic><topic>Tracking</topic><topic>Voltage control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yohan Hong</creatorcontrib><creatorcontrib>Pham, Son N.</creatorcontrib><creatorcontrib>Taegeun Yoo</creatorcontrib><creatorcontrib>Kookbyung Chae</creatorcontrib><creatorcontrib>Kwang-Hyun Baek</creatorcontrib><creatorcontrib>Yong Sin Kim</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><jtitle>IEEE transactions on power electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yohan Hong</au><au>Pham, Son N.</au><au>Taegeun Yoo</au><au>Kookbyung Chae</au><au>Kwang-Hyun Baek</au><au>Yong Sin Kim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient Maximum Power Point Tracking for a Distributed PV System under Rapidly Changing Environmental Conditions</atitle><jtitle>IEEE transactions on power electronics</jtitle><stitle>TPEL</stitle><date>2015-08-01</date><risdate>2015</risdate><volume>30</volume><issue>8</issue><spage>4209</spage><epage>4218</epage><pages>4209-4218</pages><issn>0885-8993</issn><eissn>1941-0107</eissn><coden>ITPEE8</coden><abstract>When conventional maximum power point tracking (MPPT) techniques are required to operate fast under rapidly changing environmental conditions, a large power loss can be caused by slow tracking speed, output power fluctuation, or additionally required ad hoc parameters. This paper proposes a fast and efficient MPPT technique that minimizes the power loss with the adaptively binary-weighted step (ABWS) followed by the monotonically decreased step (MDS) without causing output power fluctuation or requiring additional ad hoc parameter. The proposed MPPT system for a photovoltaic (PV) module is implemented by a boost converter with a microcontroller unit. The theoretical analysis and the simulation results show that the proposed MPPT provides fast and accurate tracking under rapidly changing environmental conditions. The experimental results based on a distributed PV system demonstrate that the proposed MPPT technique is superior to the conventional perturb and observe (P&O) technique, which reduces the tracking time and the overall power loss by up to 82.95%, 91.51% and 82.46%, 97.71% for two PV modules, respectively.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPEL.2014.2352314</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0885-8993 |
ispartof | IEEE transactions on power electronics, 2015-08, Vol.30 (8), p.4209-4218 |
issn | 0885-8993 1941-0107 |
language | eng |
recordid | cdi_ieee_primary_6884809 |
source | IEEE Electronic Library (IEL) |
subjects | Efficiency Electric power Electrical equipment Electronics Environmental conditions Fluctuation Fluctuations Inverters Maximum power Maximum power point trackers Modules Photovoltaic cells Power loss Pulse width modulation Simulation Solar cells Steady-state Tracking Voltage control |
title | Efficient Maximum Power Point Tracking for a Distributed PV System under Rapidly Changing Environmental Conditions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T06%3A54%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20Maximum%20Power%20Point%20Tracking%20for%20a%20Distributed%20PV%20System%20under%20Rapidly%20Changing%20Environmental%20Conditions&rft.jtitle=IEEE%20transactions%20on%20power%20electronics&rft.au=Yohan%20Hong&rft.date=2015-08-01&rft.volume=30&rft.issue=8&rft.spage=4209&rft.epage=4218&rft.pages=4209-4218&rft.issn=0885-8993&rft.eissn=1941-0107&rft.coden=ITPEE8&rft_id=info:doi/10.1109/TPEL.2014.2352314&rft_dat=%3Cproquest_RIE%3E3621653481%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1662445558&rft_id=info:pmid/&rft_ieee_id=6884809&rfr_iscdi=true |