Efficient Maximum Power Point Tracking for a Distributed PV System under Rapidly Changing Environmental Conditions

When conventional maximum power point tracking (MPPT) techniques are required to operate fast under rapidly changing environmental conditions, a large power loss can be caused by slow tracking speed, output power fluctuation, or additionally required ad hoc parameters. This paper proposes a fast and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power electronics 2015-08, Vol.30 (8), p.4209-4218
Hauptverfasser: Yohan Hong, Pham, Son N., Taegeun Yoo, Kookbyung Chae, Kwang-Hyun Baek, Yong Sin Kim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4218
container_issue 8
container_start_page 4209
container_title IEEE transactions on power electronics
container_volume 30
creator Yohan Hong
Pham, Son N.
Taegeun Yoo
Kookbyung Chae
Kwang-Hyun Baek
Yong Sin Kim
description When conventional maximum power point tracking (MPPT) techniques are required to operate fast under rapidly changing environmental conditions, a large power loss can be caused by slow tracking speed, output power fluctuation, or additionally required ad hoc parameters. This paper proposes a fast and efficient MPPT technique that minimizes the power loss with the adaptively binary-weighted step (ABWS) followed by the monotonically decreased step (MDS) without causing output power fluctuation or requiring additional ad hoc parameter. The proposed MPPT system for a photovoltaic (PV) module is implemented by a boost converter with a microcontroller unit. The theoretical analysis and the simulation results show that the proposed MPPT provides fast and accurate tracking under rapidly changing environmental conditions. The experimental results based on a distributed PV system demonstrate that the proposed MPPT technique is superior to the conventional perturb and observe (P&O) technique, which reduces the tracking time and the overall power loss by up to 82.95%, 91.51% and 82.46%, 97.71% for two PV modules, respectively.
doi_str_mv 10.1109/TPEL.2014.2352314
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_6884809</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6884809</ieee_id><sourcerecordid>3621653481</sourcerecordid><originalsourceid>FETCH-LOGICAL-c425t-b302b972f3e446c609491d38707015a58577db8a175d8452edc1095af7600f13</originalsourceid><addsrcrecordid>eNqNkcFqGzEQhkVoIG7SByi9CHrpZZ2ZlbSSjsFx0oBLTGt6XeRdbapkV3Kl3aR--8o45NBTLzMwfP_AzEfIR4Q5IujLzXq5mpeAfF4yUTLkJ2SGmmMBCPIdmYFSolBaszPyPqVHyKQAnJG47DrXOOtH-s38ccM00HV4sTFXl2ebaJon5x9oFyI19NqlMbrtNNqWrn_SH_s02oFOvs2B72bn2n5PF7-MfzhElv7ZxeCHvNv0dBF860YXfLogp53pk_3w2s_J5ma5WXwtVve3d4urVdHwUozFlkG51bLsmOW8airQXGPLlAQJKIxQQsp2qwxK0SouSts2-RHCdLIC6JCdky_HtbsYfk82jfXgUmP73ngbplSjBAFaVew_0EpKXSGgzujnf9DHMEWf78hUVXIuhFCZwiPVxJBStF29i24wcV8j1Adf9cFXffBVv_rKmU_HjLPWvvGVUlyBZn8BCVmQBA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1662445558</pqid></control><display><type>article</type><title>Efficient Maximum Power Point Tracking for a Distributed PV System under Rapidly Changing Environmental Conditions</title><source>IEEE Electronic Library (IEL)</source><creator>Yohan Hong ; Pham, Son N. ; Taegeun Yoo ; Kookbyung Chae ; Kwang-Hyun Baek ; Yong Sin Kim</creator><creatorcontrib>Yohan Hong ; Pham, Son N. ; Taegeun Yoo ; Kookbyung Chae ; Kwang-Hyun Baek ; Yong Sin Kim</creatorcontrib><description>When conventional maximum power point tracking (MPPT) techniques are required to operate fast under rapidly changing environmental conditions, a large power loss can be caused by slow tracking speed, output power fluctuation, or additionally required ad hoc parameters. This paper proposes a fast and efficient MPPT technique that minimizes the power loss with the adaptively binary-weighted step (ABWS) followed by the monotonically decreased step (MDS) without causing output power fluctuation or requiring additional ad hoc parameter. The proposed MPPT system for a photovoltaic (PV) module is implemented by a boost converter with a microcontroller unit. The theoretical analysis and the simulation results show that the proposed MPPT provides fast and accurate tracking under rapidly changing environmental conditions. The experimental results based on a distributed PV system demonstrate that the proposed MPPT technique is superior to the conventional perturb and observe (P&amp;O) technique, which reduces the tracking time and the overall power loss by up to 82.95%, 91.51% and 82.46%, 97.71% for two PV modules, respectively.</description><identifier>ISSN: 0885-8993</identifier><identifier>EISSN: 1941-0107</identifier><identifier>DOI: 10.1109/TPEL.2014.2352314</identifier><identifier>CODEN: ITPEE8</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Efficiency ; Electric power ; Electrical equipment ; Electronics ; Environmental conditions ; Fluctuation ; Fluctuations ; Inverters ; Maximum power ; Maximum power point trackers ; Modules ; Photovoltaic cells ; Power loss ; Pulse width modulation ; Simulation ; Solar cells ; Steady-state ; Tracking ; Voltage control</subject><ispartof>IEEE transactions on power electronics, 2015-08, Vol.30 (8), p.4209-4218</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Aug 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c425t-b302b972f3e446c609491d38707015a58577db8a175d8452edc1095af7600f13</citedby><cites>FETCH-LOGICAL-c425t-b302b972f3e446c609491d38707015a58577db8a175d8452edc1095af7600f13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6884809$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6884809$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yohan Hong</creatorcontrib><creatorcontrib>Pham, Son N.</creatorcontrib><creatorcontrib>Taegeun Yoo</creatorcontrib><creatorcontrib>Kookbyung Chae</creatorcontrib><creatorcontrib>Kwang-Hyun Baek</creatorcontrib><creatorcontrib>Yong Sin Kim</creatorcontrib><title>Efficient Maximum Power Point Tracking for a Distributed PV System under Rapidly Changing Environmental Conditions</title><title>IEEE transactions on power electronics</title><addtitle>TPEL</addtitle><description>When conventional maximum power point tracking (MPPT) techniques are required to operate fast under rapidly changing environmental conditions, a large power loss can be caused by slow tracking speed, output power fluctuation, or additionally required ad hoc parameters. This paper proposes a fast and efficient MPPT technique that minimizes the power loss with the adaptively binary-weighted step (ABWS) followed by the monotonically decreased step (MDS) without causing output power fluctuation or requiring additional ad hoc parameter. The proposed MPPT system for a photovoltaic (PV) module is implemented by a boost converter with a microcontroller unit. The theoretical analysis and the simulation results show that the proposed MPPT provides fast and accurate tracking under rapidly changing environmental conditions. The experimental results based on a distributed PV system demonstrate that the proposed MPPT technique is superior to the conventional perturb and observe (P&amp;O) technique, which reduces the tracking time and the overall power loss by up to 82.95%, 91.51% and 82.46%, 97.71% for two PV modules, respectively.</description><subject>Efficiency</subject><subject>Electric power</subject><subject>Electrical equipment</subject><subject>Electronics</subject><subject>Environmental conditions</subject><subject>Fluctuation</subject><subject>Fluctuations</subject><subject>Inverters</subject><subject>Maximum power</subject><subject>Maximum power point trackers</subject><subject>Modules</subject><subject>Photovoltaic cells</subject><subject>Power loss</subject><subject>Pulse width modulation</subject><subject>Simulation</subject><subject>Solar cells</subject><subject>Steady-state</subject><subject>Tracking</subject><subject>Voltage control</subject><issn>0885-8993</issn><issn>1941-0107</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqNkcFqGzEQhkVoIG7SByi9CHrpZZ2ZlbSSjsFx0oBLTGt6XeRdbapkV3Kl3aR--8o45NBTLzMwfP_AzEfIR4Q5IujLzXq5mpeAfF4yUTLkJ2SGmmMBCPIdmYFSolBaszPyPqVHyKQAnJG47DrXOOtH-s38ccM00HV4sTFXl2ebaJon5x9oFyI19NqlMbrtNNqWrn_SH_s02oFOvs2B72bn2n5PF7-MfzhElv7ZxeCHvNv0dBF860YXfLogp53pk_3w2s_J5ma5WXwtVve3d4urVdHwUozFlkG51bLsmOW8airQXGPLlAQJKIxQQsp2qwxK0SouSts2-RHCdLIC6JCdky_HtbsYfk82jfXgUmP73ngbplSjBAFaVew_0EpKXSGgzujnf9DHMEWf78hUVXIuhFCZwiPVxJBStF29i24wcV8j1Adf9cFXffBVv_rKmU_HjLPWvvGVUlyBZn8BCVmQBA</recordid><startdate>20150801</startdate><enddate>20150801</enddate><creator>Yohan Hong</creator><creator>Pham, Son N.</creator><creator>Taegeun Yoo</creator><creator>Kookbyung Chae</creator><creator>Kwang-Hyun Baek</creator><creator>Yong Sin Kim</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>F28</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope></search><sort><creationdate>20150801</creationdate><title>Efficient Maximum Power Point Tracking for a Distributed PV System under Rapidly Changing Environmental Conditions</title><author>Yohan Hong ; Pham, Son N. ; Taegeun Yoo ; Kookbyung Chae ; Kwang-Hyun Baek ; Yong Sin Kim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c425t-b302b972f3e446c609491d38707015a58577db8a175d8452edc1095af7600f13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Efficiency</topic><topic>Electric power</topic><topic>Electrical equipment</topic><topic>Electronics</topic><topic>Environmental conditions</topic><topic>Fluctuation</topic><topic>Fluctuations</topic><topic>Inverters</topic><topic>Maximum power</topic><topic>Maximum power point trackers</topic><topic>Modules</topic><topic>Photovoltaic cells</topic><topic>Power loss</topic><topic>Pulse width modulation</topic><topic>Simulation</topic><topic>Solar cells</topic><topic>Steady-state</topic><topic>Tracking</topic><topic>Voltage control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yohan Hong</creatorcontrib><creatorcontrib>Pham, Son N.</creatorcontrib><creatorcontrib>Taegeun Yoo</creatorcontrib><creatorcontrib>Kookbyung Chae</creatorcontrib><creatorcontrib>Kwang-Hyun Baek</creatorcontrib><creatorcontrib>Yong Sin Kim</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><jtitle>IEEE transactions on power electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yohan Hong</au><au>Pham, Son N.</au><au>Taegeun Yoo</au><au>Kookbyung Chae</au><au>Kwang-Hyun Baek</au><au>Yong Sin Kim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient Maximum Power Point Tracking for a Distributed PV System under Rapidly Changing Environmental Conditions</atitle><jtitle>IEEE transactions on power electronics</jtitle><stitle>TPEL</stitle><date>2015-08-01</date><risdate>2015</risdate><volume>30</volume><issue>8</issue><spage>4209</spage><epage>4218</epage><pages>4209-4218</pages><issn>0885-8993</issn><eissn>1941-0107</eissn><coden>ITPEE8</coden><abstract>When conventional maximum power point tracking (MPPT) techniques are required to operate fast under rapidly changing environmental conditions, a large power loss can be caused by slow tracking speed, output power fluctuation, or additionally required ad hoc parameters. This paper proposes a fast and efficient MPPT technique that minimizes the power loss with the adaptively binary-weighted step (ABWS) followed by the monotonically decreased step (MDS) without causing output power fluctuation or requiring additional ad hoc parameter. The proposed MPPT system for a photovoltaic (PV) module is implemented by a boost converter with a microcontroller unit. The theoretical analysis and the simulation results show that the proposed MPPT provides fast and accurate tracking under rapidly changing environmental conditions. The experimental results based on a distributed PV system demonstrate that the proposed MPPT technique is superior to the conventional perturb and observe (P&amp;O) technique, which reduces the tracking time and the overall power loss by up to 82.95%, 91.51% and 82.46%, 97.71% for two PV modules, respectively.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPEL.2014.2352314</doi><tpages>10</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-8993
ispartof IEEE transactions on power electronics, 2015-08, Vol.30 (8), p.4209-4218
issn 0885-8993
1941-0107
language eng
recordid cdi_ieee_primary_6884809
source IEEE Electronic Library (IEL)
subjects Efficiency
Electric power
Electrical equipment
Electronics
Environmental conditions
Fluctuation
Fluctuations
Inverters
Maximum power
Maximum power point trackers
Modules
Photovoltaic cells
Power loss
Pulse width modulation
Simulation
Solar cells
Steady-state
Tracking
Voltage control
title Efficient Maximum Power Point Tracking for a Distributed PV System under Rapidly Changing Environmental Conditions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T06%3A54%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20Maximum%20Power%20Point%20Tracking%20for%20a%20Distributed%20PV%20System%20under%20Rapidly%20Changing%20Environmental%20Conditions&rft.jtitle=IEEE%20transactions%20on%20power%20electronics&rft.au=Yohan%20Hong&rft.date=2015-08-01&rft.volume=30&rft.issue=8&rft.spage=4209&rft.epage=4218&rft.pages=4209-4218&rft.issn=0885-8993&rft.eissn=1941-0107&rft.coden=ITPEE8&rft_id=info:doi/10.1109/TPEL.2014.2352314&rft_dat=%3Cproquest_RIE%3E3621653481%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1662445558&rft_id=info:pmid/&rft_ieee_id=6884809&rfr_iscdi=true