Robust, non-fragile and optimal controller design via linear matrix inequalities
In this article, we introduce a robust nonfragile state feedback controller which is also optimal with respect to a quadratic performance index, using linear matrix inequalities (LMI). The uncertainties are assumed to be polytopic, both in the controller gains and the system dynamics. A numerical ex...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this article, we introduce a robust nonfragile state feedback controller which is also optimal with respect to a quadratic performance index, using linear matrix inequalities (LMI). The uncertainties are assumed to be polytopic, both in the controller gains and the system dynamics. A numerical example is presented to demonstrate the efficiency of this method, and the controller turns out to be robust with respect to the uncertainties in the plant and the controller. |
---|---|
ISSN: | 0743-1619 2378-5861 |
DOI: | 10.1109/ACC.1998.688374 |