An Interval Type-2 Neural Fuzzy System for Online System Identification and Feature Elimination
We propose an integrated mechanism for discarding derogatory features and extraction of fuzzy rules based on an interval type-2 neural fuzzy system (NFS)-in fact, it is a more general scheme that can discard bad features, irrelevant antecedent clauses, and even irrelevant rules. High-dimensional inp...
Gespeichert in:
Veröffentlicht in: | IEEE transaction on neural networks and learning systems 2015-07, Vol.26 (7), p.1442-1455 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1455 |
---|---|
container_issue | 7 |
container_start_page | 1442 |
container_title | IEEE transaction on neural networks and learning systems |
container_volume | 26 |
creator | Chin-Teng Lin Pal, Nikhil R. Shang-Lin Wu Yu-Ting Liu Yang-Yin Lin |
description | We propose an integrated mechanism for discarding derogatory features and extraction of fuzzy rules based on an interval type-2 neural fuzzy system (NFS)-in fact, it is a more general scheme that can discard bad features, irrelevant antecedent clauses, and even irrelevant rules. High-dimensional input variable and a large number of rules not only enhance the computational complexity of NFSs but also reduce their interpretability. Therefore, a mechanism for simultaneous extraction of fuzzy rules and reducing the impact of (or eliminating) the inferior features is necessary. The proposed approach, namely an interval type-2 Neural Fuzzy System for online System Identification and Feature Elimination (IT2NFS-SIFE), uses type-2 fuzzy sets to model uncertainties associated with information and data in designing the knowledge base. The consequent part of the IT2NFS-SIFE is of Takagi-Sugeno-Kang type with interval weights. The IT2NFS-SIFE possesses a self-evolving property that can automatically generate fuzzy rules. The poor features can be discarded through the concept of a membership modulator. The antecedent and modulator weights are learned using a gradient descent algorithm. The consequent part weights are tuned via the rule-ordered Kalman filter algorithm to enhance learning effectiveness. Simulation results show that IT2NFS-SIFE not only simplifies the system architecture by eliminating derogatory/irrelevant antecedent clauses, rules, and features but also maintains excellent performance. |
doi_str_mv | 10.1109/TNNLS.2014.2346537 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_6881716</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6881716</ieee_id><sourcerecordid>3719674591</sourcerecordid><originalsourceid>FETCH-LOGICAL-c465t-a24c736d2b2f00322772a5241f2462e115b480bd70851a76595b13865a4b14e63</originalsourceid><addsrcrecordid>eNpdkU9r3DAQxU1oSUKaL9BCEfSSi7fS6K-PIWTThWVzyBZ6E7I9BgVb3kp2YfPpo2Q3e-hcNBr93vDQK4qvjC4Yo9XP7WazfloAZWIBXCjJ9VlxCUxBCdyYT6de_7korlN6prkUlUpU58UFSKY41eKysLeBrMKE8Z_ryXa_wxLIBueYb8v55WVPnvZpwoF0YySPofcBPyarFsPkO9-4yY-BuNCSJbppjkjuez_48D7_UnzuXJ_w-nheFb-X99u7X-X68WF1d7sum-x9Kh2IRnPVQg0dpRxAa3ASBOtAKEDGZC0MrVtNjWROK1nJmnGjpBM1E6j4VXFz2LuL498Z02QHnxrsexdwnJNlqqLANKtYRn_8hz6PcwzZXaZMZSg1XGQKDlQTx5QidnYX_eDi3jJq3xKw7wnYtwTsMYEs-n5cPdcDtifJx39n4NsB8Ih4elbGZGuKvwIgf4eT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1689800834</pqid></control><display><type>article</type><title>An Interval Type-2 Neural Fuzzy System for Online System Identification and Feature Elimination</title><source>IEEE Electronic Library (IEL)</source><creator>Chin-Teng Lin ; Pal, Nikhil R. ; Shang-Lin Wu ; Yu-Ting Liu ; Yang-Yin Lin</creator><creatorcontrib>Chin-Teng Lin ; Pal, Nikhil R. ; Shang-Lin Wu ; Yu-Ting Liu ; Yang-Yin Lin</creatorcontrib><description>We propose an integrated mechanism for discarding derogatory features and extraction of fuzzy rules based on an interval type-2 neural fuzzy system (NFS)-in fact, it is a more general scheme that can discard bad features, irrelevant antecedent clauses, and even irrelevant rules. High-dimensional input variable and a large number of rules not only enhance the computational complexity of NFSs but also reduce their interpretability. Therefore, a mechanism for simultaneous extraction of fuzzy rules and reducing the impact of (or eliminating) the inferior features is necessary. The proposed approach, namely an interval type-2 Neural Fuzzy System for online System Identification and Feature Elimination (IT2NFS-SIFE), uses type-2 fuzzy sets to model uncertainties associated with information and data in designing the knowledge base. The consequent part of the IT2NFS-SIFE is of Takagi-Sugeno-Kang type with interval weights. The IT2NFS-SIFE possesses a self-evolving property that can automatically generate fuzzy rules. The poor features can be discarded through the concept of a membership modulator. The antecedent and modulator weights are learned using a gradient descent algorithm. The consequent part weights are tuned via the rule-ordered Kalman filter algorithm to enhance learning effectiveness. Simulation results show that IT2NFS-SIFE not only simplifies the system architecture by eliminating derogatory/irrelevant antecedent clauses, rules, and features but also maintains excellent performance.</description><identifier>ISSN: 2162-237X</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNNLS.2014.2346537</identifier><identifier>PMID: 25163074</identifier><identifier>CODEN: ITNNAL</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Automobiles ; Chemical Industry ; Computer Simulation ; Feature extraction ; Feature selection ; Fuzzy Logic ; fuzzy neural network ; Fuzzy neural networks ; Fuzzy sets ; Input variables ; Kalman filters ; Machine Learning ; Modulation ; Neural Networks, Computer ; Normal Distribution ; online structure learning ; Online Systems ; system identification ; type-2 neural fuzzy systems (NFSs)</subject><ispartof>IEEE transaction on neural networks and learning systems, 2015-07, Vol.26 (7), p.1442-1455</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jul 2015</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c465t-a24c736d2b2f00322772a5241f2462e115b480bd70851a76595b13865a4b14e63</citedby><cites>FETCH-LOGICAL-c465t-a24c736d2b2f00322772a5241f2462e115b480bd70851a76595b13865a4b14e63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6881716$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6881716$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25163074$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chin-Teng Lin</creatorcontrib><creatorcontrib>Pal, Nikhil R.</creatorcontrib><creatorcontrib>Shang-Lin Wu</creatorcontrib><creatorcontrib>Yu-Ting Liu</creatorcontrib><creatorcontrib>Yang-Yin Lin</creatorcontrib><title>An Interval Type-2 Neural Fuzzy System for Online System Identification and Feature Elimination</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNNLS</addtitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><description>We propose an integrated mechanism for discarding derogatory features and extraction of fuzzy rules based on an interval type-2 neural fuzzy system (NFS)-in fact, it is a more general scheme that can discard bad features, irrelevant antecedent clauses, and even irrelevant rules. High-dimensional input variable and a large number of rules not only enhance the computational complexity of NFSs but also reduce their interpretability. Therefore, a mechanism for simultaneous extraction of fuzzy rules and reducing the impact of (or eliminating) the inferior features is necessary. The proposed approach, namely an interval type-2 Neural Fuzzy System for online System Identification and Feature Elimination (IT2NFS-SIFE), uses type-2 fuzzy sets to model uncertainties associated with information and data in designing the knowledge base. The consequent part of the IT2NFS-SIFE is of Takagi-Sugeno-Kang type with interval weights. The IT2NFS-SIFE possesses a self-evolving property that can automatically generate fuzzy rules. The poor features can be discarded through the concept of a membership modulator. The antecedent and modulator weights are learned using a gradient descent algorithm. The consequent part weights are tuned via the rule-ordered Kalman filter algorithm to enhance learning effectiveness. Simulation results show that IT2NFS-SIFE not only simplifies the system architecture by eliminating derogatory/irrelevant antecedent clauses, rules, and features but also maintains excellent performance.</description><subject>Algorithms</subject><subject>Automobiles</subject><subject>Chemical Industry</subject><subject>Computer Simulation</subject><subject>Feature extraction</subject><subject>Feature selection</subject><subject>Fuzzy Logic</subject><subject>fuzzy neural network</subject><subject>Fuzzy neural networks</subject><subject>Fuzzy sets</subject><subject>Input variables</subject><subject>Kalman filters</subject><subject>Machine Learning</subject><subject>Modulation</subject><subject>Neural Networks, Computer</subject><subject>Normal Distribution</subject><subject>online structure learning</subject><subject>Online Systems</subject><subject>system identification</subject><subject>type-2 neural fuzzy systems (NFSs)</subject><issn>2162-237X</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkU9r3DAQxU1oSUKaL9BCEfSSi7fS6K-PIWTThWVzyBZ6E7I9BgVb3kp2YfPpo2Q3e-hcNBr93vDQK4qvjC4Yo9XP7WazfloAZWIBXCjJ9VlxCUxBCdyYT6de_7korlN6prkUlUpU58UFSKY41eKysLeBrMKE8Z_ryXa_wxLIBueYb8v55WVPnvZpwoF0YySPofcBPyarFsPkO9-4yY-BuNCSJbppjkjuez_48D7_UnzuXJ_w-nheFb-X99u7X-X68WF1d7sum-x9Kh2IRnPVQg0dpRxAa3ASBOtAKEDGZC0MrVtNjWROK1nJmnGjpBM1E6j4VXFz2LuL498Z02QHnxrsexdwnJNlqqLANKtYRn_8hz6PcwzZXaZMZSg1XGQKDlQTx5QidnYX_eDi3jJq3xKw7wnYtwTsMYEs-n5cPdcDtifJx39n4NsB8Ih4elbGZGuKvwIgf4eT</recordid><startdate>20150701</startdate><enddate>20150701</enddate><creator>Chin-Teng Lin</creator><creator>Pal, Nikhil R.</creator><creator>Shang-Lin Wu</creator><creator>Yu-Ting Liu</creator><creator>Yang-Yin Lin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20150701</creationdate><title>An Interval Type-2 Neural Fuzzy System for Online System Identification and Feature Elimination</title><author>Chin-Teng Lin ; Pal, Nikhil R. ; Shang-Lin Wu ; Yu-Ting Liu ; Yang-Yin Lin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c465t-a24c736d2b2f00322772a5241f2462e115b480bd70851a76595b13865a4b14e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Automobiles</topic><topic>Chemical Industry</topic><topic>Computer Simulation</topic><topic>Feature extraction</topic><topic>Feature selection</topic><topic>Fuzzy Logic</topic><topic>fuzzy neural network</topic><topic>Fuzzy neural networks</topic><topic>Fuzzy sets</topic><topic>Input variables</topic><topic>Kalman filters</topic><topic>Machine Learning</topic><topic>Modulation</topic><topic>Neural Networks, Computer</topic><topic>Normal Distribution</topic><topic>online structure learning</topic><topic>Online Systems</topic><topic>system identification</topic><topic>type-2 neural fuzzy systems (NFSs)</topic><toplevel>online_resources</toplevel><creatorcontrib>Chin-Teng Lin</creatorcontrib><creatorcontrib>Pal, Nikhil R.</creatorcontrib><creatorcontrib>Shang-Lin Wu</creatorcontrib><creatorcontrib>Yu-Ting Liu</creatorcontrib><creatorcontrib>Yang-Yin Lin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chin-Teng Lin</au><au>Pal, Nikhil R.</au><au>Shang-Lin Wu</au><au>Yu-Ting Liu</au><au>Yang-Yin Lin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Interval Type-2 Neural Fuzzy System for Online System Identification and Feature Elimination</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNNLS</stitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><date>2015-07-01</date><risdate>2015</risdate><volume>26</volume><issue>7</issue><spage>1442</spage><epage>1455</epage><pages>1442-1455</pages><issn>2162-237X</issn><eissn>2162-2388</eissn><coden>ITNNAL</coden><abstract>We propose an integrated mechanism for discarding derogatory features and extraction of fuzzy rules based on an interval type-2 neural fuzzy system (NFS)-in fact, it is a more general scheme that can discard bad features, irrelevant antecedent clauses, and even irrelevant rules. High-dimensional input variable and a large number of rules not only enhance the computational complexity of NFSs but also reduce their interpretability. Therefore, a mechanism for simultaneous extraction of fuzzy rules and reducing the impact of (or eliminating) the inferior features is necessary. The proposed approach, namely an interval type-2 Neural Fuzzy System for online System Identification and Feature Elimination (IT2NFS-SIFE), uses type-2 fuzzy sets to model uncertainties associated with information and data in designing the knowledge base. The consequent part of the IT2NFS-SIFE is of Takagi-Sugeno-Kang type with interval weights. The IT2NFS-SIFE possesses a self-evolving property that can automatically generate fuzzy rules. The poor features can be discarded through the concept of a membership modulator. The antecedent and modulator weights are learned using a gradient descent algorithm. The consequent part weights are tuned via the rule-ordered Kalman filter algorithm to enhance learning effectiveness. Simulation results show that IT2NFS-SIFE not only simplifies the system architecture by eliminating derogatory/irrelevant antecedent clauses, rules, and features but also maintains excellent performance.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>25163074</pmid><doi>10.1109/TNNLS.2014.2346537</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2162-237X |
ispartof | IEEE transaction on neural networks and learning systems, 2015-07, Vol.26 (7), p.1442-1455 |
issn | 2162-237X 2162-2388 |
language | eng |
recordid | cdi_ieee_primary_6881716 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Automobiles Chemical Industry Computer Simulation Feature extraction Feature selection Fuzzy Logic fuzzy neural network Fuzzy neural networks Fuzzy sets Input variables Kalman filters Machine Learning Modulation Neural Networks, Computer Normal Distribution online structure learning Online Systems system identification type-2 neural fuzzy systems (NFSs) |
title | An Interval Type-2 Neural Fuzzy System for Online System Identification and Feature Elimination |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T03%3A21%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Interval%20Type-2%20Neural%20Fuzzy%20System%20for%20Online%20System%20Identification%20and%20Feature%20Elimination&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Chin-Teng%20Lin&rft.date=2015-07-01&rft.volume=26&rft.issue=7&rft.spage=1442&rft.epage=1455&rft.pages=1442-1455&rft.issn=2162-237X&rft.eissn=2162-2388&rft.coden=ITNNAL&rft_id=info:doi/10.1109/TNNLS.2014.2346537&rft_dat=%3Cproquest_RIE%3E3719674591%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1689800834&rft_id=info:pmid/25163074&rft_ieee_id=6881716&rfr_iscdi=true |