From data-to dynamics: predicting chaotic time series by hierarchical Bayesian neural nets
A hierarchical Bayesian algorithm was used to make predictions of chaotic time series data generated by the Rossler system which is a continuous dynamical system. The scheme infers a nonlinear dynamical system model using feedforward neural nets. The most difficult task, estimation of the embedding...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!