From data-to dynamics: predicting chaotic time series by hierarchical Bayesian neural nets

A hierarchical Bayesian algorithm was used to make predictions of chaotic time series data generated by the Rossler system which is a continuous dynamical system. The scheme infers a nonlinear dynamical system model using feedforward neural nets. The most difficult task, estimation of the embedding...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Matsumoto, T., Hamagishi, H., Sugi, J., Saito, M.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!