Sinusoidal Peristaltic Waves in Soft Actuator for Mimicry of Esophageal Swallowing

In order to understand fluid transport throughout esophageal swallowing in man, a biologically inspired soft-robotic peristaltic actuator has been designed and manufactured to perform biomimetic swallowing. To achieve congruence with current mathematical modeling techniques for esophageal peristalsi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE/ASME transactions on mechatronics 2015-06, Vol.20 (3), p.1331-1337
Hauptverfasser: Dirven, Steven, Weiliang Xu, Cheng, Leo K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1337
container_issue 3
container_start_page 1331
container_title IEEE/ASME transactions on mechatronics
container_volume 20
creator Dirven, Steven
Weiliang Xu
Cheng, Leo K.
description In order to understand fluid transport throughout esophageal swallowing in man, a biologically inspired soft-robotic peristaltic actuator has been designed and manufactured to perform biomimetic swallowing. To achieve congruence with current mathematical modeling techniques for esophageal peristalsis, this paper examines the capability of the device (empirical) towards achieving sinusoidal transport waves with variations of clinically significant parameters such as amplitude and wavelength. The performance of the device to fit the commanded trajectory, by minimization of mean squared error, is tested over the range of wavefront length 30 ≤ λ/2 ≤ 60 mm and amplitude 6-8 mm in a two-dimensional capability analysis. It is found that the device is capable of achieving propagation of families of wave shapes with less than 5% full scale mean error, which improves for increasing wavefront length and reducing amplitude. The aim for the device in the future is to inspire a novel rheometric technique in the physical domain which characterizes fluid formulations based on intrabolus pressure signatures. This analysis expresses the trajectory generation technique and performance of the novel device to produce continuous peristaltic waves towards biomimetic swallowing.
doi_str_mv 10.1109/TMECH.2014.2337291
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_6870480</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6870480</ieee_id><sourcerecordid>10_1109_TMECH_2014_2337291</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-4c09a6a9cee8670e938bbee7522b184e8bbb6ccbcc9c51918d0eec8129c8bf323</originalsourceid><addsrcrecordid>eNo9kN1OwkAQRjdGExF9Ab3ZFyjO_tDuXhKCYgLRCEbvmu0wxTWFJd0C4e0tQryYfDOTnO_iMHYvoCcE2Mf5dDQc9yQI3ZNKZdKKC9YRVoukfX1dtjsYlWit-tfsJsYfANACRIe9z_x6G4NfuIq_Ue1j46rGI_90O4rcr_kslA0fYLN1Tah52c7UrzzWBx5KPoph8-2W1MKzvauqsPfr5S27Kl0V6e6cXfbxNJoPx8nk9fllOJgkqCFrEo1gXeosEpk0A7LKFAVR1peyEEZTexUpYoFosS-sMAsgQiOkRVOUSqouk6derEOMNZX5pvYrVx9yAfnRSv5nJT9ayc9WWujhBHki-gdSk4E2oH4BRb9gEg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Sinusoidal Peristaltic Waves in Soft Actuator for Mimicry of Esophageal Swallowing</title><source>IEEE Electronic Library (IEL)</source><creator>Dirven, Steven ; Weiliang Xu ; Cheng, Leo K.</creator><creatorcontrib>Dirven, Steven ; Weiliang Xu ; Cheng, Leo K.</creatorcontrib><description>In order to understand fluid transport throughout esophageal swallowing in man, a biologically inspired soft-robotic peristaltic actuator has been designed and manufactured to perform biomimetic swallowing. To achieve congruence with current mathematical modeling techniques for esophageal peristalsis, this paper examines the capability of the device (empirical) towards achieving sinusoidal transport waves with variations of clinically significant parameters such as amplitude and wavelength. The performance of the device to fit the commanded trajectory, by minimization of mean squared error, is tested over the range of wavefront length 30 ≤ λ/2 ≤ 60 mm and amplitude 6-8 mm in a two-dimensional capability analysis. It is found that the device is capable of achieving propagation of families of wave shapes with less than 5% full scale mean error, which improves for increasing wavefront length and reducing amplitude. The aim for the device in the future is to inspire a novel rheometric technique in the physical domain which characterizes fluid formulations based on intrabolus pressure signatures. This analysis expresses the trajectory generation technique and performance of the novel device to produce continuous peristaltic waves towards biomimetic swallowing.</description><identifier>ISSN: 1083-4435</identifier><identifier>EISSN: 1941-014X</identifier><identifier>DOI: 10.1109/TMECH.2014.2337291</identifier><identifier>CODEN: IATEFW</identifier><language>eng</language><publisher>IEEE</publisher><subject>Actuators ; Biology ; Biomimetic ; Geometry ; Mathematical model ; peristaltic pumping ; Robots ; Shape ; soft actuator ; soft robot ; swallowing robot ; Trajectory</subject><ispartof>IEEE/ASME transactions on mechatronics, 2015-06, Vol.20 (3), p.1331-1337</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-4c09a6a9cee8670e938bbee7522b184e8bbb6ccbcc9c51918d0eec8129c8bf323</citedby><cites>FETCH-LOGICAL-c407t-4c09a6a9cee8670e938bbee7522b184e8bbb6ccbcc9c51918d0eec8129c8bf323</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6870480$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6870480$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Dirven, Steven</creatorcontrib><creatorcontrib>Weiliang Xu</creatorcontrib><creatorcontrib>Cheng, Leo K.</creatorcontrib><title>Sinusoidal Peristaltic Waves in Soft Actuator for Mimicry of Esophageal Swallowing</title><title>IEEE/ASME transactions on mechatronics</title><addtitle>TMECH</addtitle><description>In order to understand fluid transport throughout esophageal swallowing in man, a biologically inspired soft-robotic peristaltic actuator has been designed and manufactured to perform biomimetic swallowing. To achieve congruence with current mathematical modeling techniques for esophageal peristalsis, this paper examines the capability of the device (empirical) towards achieving sinusoidal transport waves with variations of clinically significant parameters such as amplitude and wavelength. The performance of the device to fit the commanded trajectory, by minimization of mean squared error, is tested over the range of wavefront length 30 ≤ λ/2 ≤ 60 mm and amplitude 6-8 mm in a two-dimensional capability analysis. It is found that the device is capable of achieving propagation of families of wave shapes with less than 5% full scale mean error, which improves for increasing wavefront length and reducing amplitude. The aim for the device in the future is to inspire a novel rheometric technique in the physical domain which characterizes fluid formulations based on intrabolus pressure signatures. This analysis expresses the trajectory generation technique and performance of the novel device to produce continuous peristaltic waves towards biomimetic swallowing.</description><subject>Actuators</subject><subject>Biology</subject><subject>Biomimetic</subject><subject>Geometry</subject><subject>Mathematical model</subject><subject>peristaltic pumping</subject><subject>Robots</subject><subject>Shape</subject><subject>soft actuator</subject><subject>soft robot</subject><subject>swallowing robot</subject><subject>Trajectory</subject><issn>1083-4435</issn><issn>1941-014X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kN1OwkAQRjdGExF9Ab3ZFyjO_tDuXhKCYgLRCEbvmu0wxTWFJd0C4e0tQryYfDOTnO_iMHYvoCcE2Mf5dDQc9yQI3ZNKZdKKC9YRVoukfX1dtjsYlWit-tfsJsYfANACRIe9z_x6G4NfuIq_Ue1j46rGI_90O4rcr_kslA0fYLN1Tah52c7UrzzWBx5KPoph8-2W1MKzvauqsPfr5S27Kl0V6e6cXfbxNJoPx8nk9fllOJgkqCFrEo1gXeosEpk0A7LKFAVR1peyEEZTexUpYoFosS-sMAsgQiOkRVOUSqouk6derEOMNZX5pvYrVx9yAfnRSv5nJT9ayc9WWujhBHki-gdSk4E2oH4BRb9gEg</recordid><startdate>20150601</startdate><enddate>20150601</enddate><creator>Dirven, Steven</creator><creator>Weiliang Xu</creator><creator>Cheng, Leo K.</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20150601</creationdate><title>Sinusoidal Peristaltic Waves in Soft Actuator for Mimicry of Esophageal Swallowing</title><author>Dirven, Steven ; Weiliang Xu ; Cheng, Leo K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-4c09a6a9cee8670e938bbee7522b184e8bbb6ccbcc9c51918d0eec8129c8bf323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Actuators</topic><topic>Biology</topic><topic>Biomimetic</topic><topic>Geometry</topic><topic>Mathematical model</topic><topic>peristaltic pumping</topic><topic>Robots</topic><topic>Shape</topic><topic>soft actuator</topic><topic>soft robot</topic><topic>swallowing robot</topic><topic>Trajectory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dirven, Steven</creatorcontrib><creatorcontrib>Weiliang Xu</creatorcontrib><creatorcontrib>Cheng, Leo K.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE/ASME transactions on mechatronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dirven, Steven</au><au>Weiliang Xu</au><au>Cheng, Leo K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sinusoidal Peristaltic Waves in Soft Actuator for Mimicry of Esophageal Swallowing</atitle><jtitle>IEEE/ASME transactions on mechatronics</jtitle><stitle>TMECH</stitle><date>2015-06-01</date><risdate>2015</risdate><volume>20</volume><issue>3</issue><spage>1331</spage><epage>1337</epage><pages>1331-1337</pages><issn>1083-4435</issn><eissn>1941-014X</eissn><coden>IATEFW</coden><abstract>In order to understand fluid transport throughout esophageal swallowing in man, a biologically inspired soft-robotic peristaltic actuator has been designed and manufactured to perform biomimetic swallowing. To achieve congruence with current mathematical modeling techniques for esophageal peristalsis, this paper examines the capability of the device (empirical) towards achieving sinusoidal transport waves with variations of clinically significant parameters such as amplitude and wavelength. The performance of the device to fit the commanded trajectory, by minimization of mean squared error, is tested over the range of wavefront length 30 ≤ λ/2 ≤ 60 mm and amplitude 6-8 mm in a two-dimensional capability analysis. It is found that the device is capable of achieving propagation of families of wave shapes with less than 5% full scale mean error, which improves for increasing wavefront length and reducing amplitude. The aim for the device in the future is to inspire a novel rheometric technique in the physical domain which characterizes fluid formulations based on intrabolus pressure signatures. This analysis expresses the trajectory generation technique and performance of the novel device to produce continuous peristaltic waves towards biomimetic swallowing.</abstract><pub>IEEE</pub><doi>10.1109/TMECH.2014.2337291</doi><tpages>7</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1083-4435
ispartof IEEE/ASME transactions on mechatronics, 2015-06, Vol.20 (3), p.1331-1337
issn 1083-4435
1941-014X
language eng
recordid cdi_ieee_primary_6870480
source IEEE Electronic Library (IEL)
subjects Actuators
Biology
Biomimetic
Geometry
Mathematical model
peristaltic pumping
Robots
Shape
soft actuator
soft robot
swallowing robot
Trajectory
title Sinusoidal Peristaltic Waves in Soft Actuator for Mimicry of Esophageal Swallowing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T19%3A24%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sinusoidal%20Peristaltic%20Waves%20in%20Soft%20Actuator%20for%20Mimicry%20of%20Esophageal%20Swallowing&rft.jtitle=IEEE/ASME%20transactions%20on%20mechatronics&rft.au=Dirven,%20Steven&rft.date=2015-06-01&rft.volume=20&rft.issue=3&rft.spage=1331&rft.epage=1337&rft.pages=1331-1337&rft.issn=1083-4435&rft.eissn=1941-014X&rft.coden=IATEFW&rft_id=info:doi/10.1109/TMECH.2014.2337291&rft_dat=%3Ccrossref_RIE%3E10_1109_TMECH_2014_2337291%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6870480&rfr_iscdi=true