Clustering Affective Qualities of Classical Music: Beyond the Valence-Arousal Plane
The important role of the valence and arousal dimensions in representing and recognizing affective qualities in music is well established. There is less evidence for the contribution of secondary dimensions such as potency, tension and energy. In particular, previous studies failed to find significa...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on affective computing 2014-10, Vol.5 (4), p.364-376 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 376 |
---|---|
container_issue | 4 |
container_start_page | 364 |
container_title | IEEE transactions on affective computing |
container_volume | 5 |
creator | Roda, Antonio Canazza, Sergio De Poli, Giovanni |
description | The important role of the valence and arousal dimensions in representing and recognizing affective qualities in music is well established. There is less evidence for the contribution of secondary dimensions such as potency, tension and energy. In particular, previous studies failed to find significant relations between computable musical features and affective dimensions other than valence and arousal. Here we present two experiments aiming at assessing how musical features, directly computable from complex audio excerpts, are related to secondary emotion dimensions. To this aim, we imposed some constraints on the musical features, namely modality and tempo, of the stimuli.The results show that although arousal and valence dominate for many musical features, it is possible to identify features, in particular Roughness, Loudness, and SpectralFlux, that are significantly related to the potency dimension. As far as we know, this is the first study that gained more insight into the affective potency in the music domain by using real music recordings and a computational approach. |
doi_str_mv | 10.1109/TAFFC.2014.2343222 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_6866179</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6866179</ieee_id><sourcerecordid>3931979561</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-5849b943285da4db706b2215e6dd94ec38a7900a996ad6e5b9af0a2689f9e28b3</originalsourceid><addsrcrecordid>eNpNkE9Lw0AQxRdRsGi_gF4WPKfun-wm4y0Gq0JFxep12SQTTVmTupsI_famtohzeXN4b-bxI-SMsxnnDC6X2XyezwTj8UzIWAohDsiEQwyRZLE6_Lcfk2kIKzaOlFKLZEJecjeEHn3TvtOsrrHsm2-kz4N1Td9goF1Nc2dDaErr6MMw6hW9xk3XVrT_QPpmHbYlRpnvhjA6npxt8ZQc1dYFnO71hLzOb5b5XbR4vL3Ps0VUClB9pNIYChj7pqqycVUkTBdCcIW6qiDGUqY2AcYsgLaVRlWArZkVOoUaUKSFPCEXu7tr330NGHqz6gbfji8NTxQoxhIpRpfYuUrfheCxNmvffFq_MZyZLT_zy89s-Zk9vzF0vgs1iPgX0KnWPAH5A47yauc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1759500732</pqid></control><display><type>article</type><title>Clustering Affective Qualities of Classical Music: Beyond the Valence-Arousal Plane</title><source>IEEE Electronic Library (IEL)</source><creator>Roda, Antonio ; Canazza, Sergio ; De Poli, Giovanni</creator><creatorcontrib>Roda, Antonio ; Canazza, Sergio ; De Poli, Giovanni</creatorcontrib><description>The important role of the valence and arousal dimensions in representing and recognizing affective qualities in music is well established. There is less evidence for the contribution of secondary dimensions such as potency, tension and energy. In particular, previous studies failed to find significant relations between computable musical features and affective dimensions other than valence and arousal. Here we present two experiments aiming at assessing how musical features, directly computable from complex audio excerpts, are related to secondary emotion dimensions. To this aim, we imposed some constraints on the musical features, namely modality and tempo, of the stimuli.The results show that although arousal and valence dominate for many musical features, it is possible to identify features, in particular Roughness, Loudness, and SpectralFlux, that are significantly related to the potency dimension. As far as we know, this is the first study that gained more insight into the affective potency in the music domain by using real music recordings and a computational approach.</description><identifier>ISSN: 1949-3045</identifier><identifier>EISSN: 1949-3045</identifier><identifier>DOI: 10.1109/TAFFC.2014.2343222</identifier><identifier>CODEN: ITACBQ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Emotion recognition ; Music ; Music information retrieval ; Physiology ; Stress ; User interfaces</subject><ispartof>IEEE transactions on affective computing, 2014-10, Vol.5 (4), p.364-376</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Oct-Dec 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-5849b943285da4db706b2215e6dd94ec38a7900a996ad6e5b9af0a2689f9e28b3</citedby><cites>FETCH-LOGICAL-c295t-5849b943285da4db706b2215e6dd94ec38a7900a996ad6e5b9af0a2689f9e28b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6866179$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6866179$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Roda, Antonio</creatorcontrib><creatorcontrib>Canazza, Sergio</creatorcontrib><creatorcontrib>De Poli, Giovanni</creatorcontrib><title>Clustering Affective Qualities of Classical Music: Beyond the Valence-Arousal Plane</title><title>IEEE transactions on affective computing</title><addtitle>T-AFFC</addtitle><description>The important role of the valence and arousal dimensions in representing and recognizing affective qualities in music is well established. There is less evidence for the contribution of secondary dimensions such as potency, tension and energy. In particular, previous studies failed to find significant relations between computable musical features and affective dimensions other than valence and arousal. Here we present two experiments aiming at assessing how musical features, directly computable from complex audio excerpts, are related to secondary emotion dimensions. To this aim, we imposed some constraints on the musical features, namely modality and tempo, of the stimuli.The results show that although arousal and valence dominate for many musical features, it is possible to identify features, in particular Roughness, Loudness, and SpectralFlux, that are significantly related to the potency dimension. As far as we know, this is the first study that gained more insight into the affective potency in the music domain by using real music recordings and a computational approach.</description><subject>Emotion recognition</subject><subject>Music</subject><subject>Music information retrieval</subject><subject>Physiology</subject><subject>Stress</subject><subject>User interfaces</subject><issn>1949-3045</issn><issn>1949-3045</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE9Lw0AQxRdRsGi_gF4WPKfun-wm4y0Gq0JFxep12SQTTVmTupsI_famtohzeXN4b-bxI-SMsxnnDC6X2XyezwTj8UzIWAohDsiEQwyRZLE6_Lcfk2kIKzaOlFKLZEJecjeEHn3TvtOsrrHsm2-kz4N1Td9goF1Nc2dDaErr6MMw6hW9xk3XVrT_QPpmHbYlRpnvhjA6npxt8ZQc1dYFnO71hLzOb5b5XbR4vL3Ps0VUClB9pNIYChj7pqqycVUkTBdCcIW6qiDGUqY2AcYsgLaVRlWArZkVOoUaUKSFPCEXu7tr330NGHqz6gbfji8NTxQoxhIpRpfYuUrfheCxNmvffFq_MZyZLT_zy89s-Zk9vzF0vgs1iPgX0KnWPAH5A47yauc</recordid><startdate>201410</startdate><enddate>201410</enddate><creator>Roda, Antonio</creator><creator>Canazza, Sergio</creator><creator>De Poli, Giovanni</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201410</creationdate><title>Clustering Affective Qualities of Classical Music: Beyond the Valence-Arousal Plane</title><author>Roda, Antonio ; Canazza, Sergio ; De Poli, Giovanni</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-5849b943285da4db706b2215e6dd94ec38a7900a996ad6e5b9af0a2689f9e28b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Emotion recognition</topic><topic>Music</topic><topic>Music information retrieval</topic><topic>Physiology</topic><topic>Stress</topic><topic>User interfaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roda, Antonio</creatorcontrib><creatorcontrib>Canazza, Sergio</creatorcontrib><creatorcontrib>De Poli, Giovanni</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on affective computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Roda, Antonio</au><au>Canazza, Sergio</au><au>De Poli, Giovanni</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Clustering Affective Qualities of Classical Music: Beyond the Valence-Arousal Plane</atitle><jtitle>IEEE transactions on affective computing</jtitle><stitle>T-AFFC</stitle><date>2014-10</date><risdate>2014</risdate><volume>5</volume><issue>4</issue><spage>364</spage><epage>376</epage><pages>364-376</pages><issn>1949-3045</issn><eissn>1949-3045</eissn><coden>ITACBQ</coden><abstract>The important role of the valence and arousal dimensions in representing and recognizing affective qualities in music is well established. There is less evidence for the contribution of secondary dimensions such as potency, tension and energy. In particular, previous studies failed to find significant relations between computable musical features and affective dimensions other than valence and arousal. Here we present two experiments aiming at assessing how musical features, directly computable from complex audio excerpts, are related to secondary emotion dimensions. To this aim, we imposed some constraints on the musical features, namely modality and tempo, of the stimuli.The results show that although arousal and valence dominate for many musical features, it is possible to identify features, in particular Roughness, Loudness, and SpectralFlux, that are significantly related to the potency dimension. As far as we know, this is the first study that gained more insight into the affective potency in the music domain by using real music recordings and a computational approach.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TAFFC.2014.2343222</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1949-3045 |
ispartof | IEEE transactions on affective computing, 2014-10, Vol.5 (4), p.364-376 |
issn | 1949-3045 1949-3045 |
language | eng |
recordid | cdi_ieee_primary_6866179 |
source | IEEE Electronic Library (IEL) |
subjects | Emotion recognition Music Music information retrieval Physiology Stress User interfaces |
title | Clustering Affective Qualities of Classical Music: Beyond the Valence-Arousal Plane |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T23%3A50%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Clustering%20Affective%20Qualities%20of%20Classical%20Music:%20Beyond%20the%20Valence-Arousal%20Plane&rft.jtitle=IEEE%20transactions%20on%20affective%20computing&rft.au=Roda,%20Antonio&rft.date=2014-10&rft.volume=5&rft.issue=4&rft.spage=364&rft.epage=376&rft.pages=364-376&rft.issn=1949-3045&rft.eissn=1949-3045&rft.coden=ITACBQ&rft_id=info:doi/10.1109/TAFFC.2014.2343222&rft_dat=%3Cproquest_RIE%3E3931979561%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1759500732&rft_id=info:pmid/&rft_ieee_id=6866179&rfr_iscdi=true |