Clustering Affective Qualities of Classical Music: Beyond the Valence-Arousal Plane

The important role of the valence and arousal dimensions in representing and recognizing affective qualities in music is well established. There is less evidence for the contribution of secondary dimensions such as potency, tension and energy. In particular, previous studies failed to find significa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on affective computing 2014-10, Vol.5 (4), p.364-376
Hauptverfasser: Roda, Antonio, Canazza, Sergio, De Poli, Giovanni
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 376
container_issue 4
container_start_page 364
container_title IEEE transactions on affective computing
container_volume 5
creator Roda, Antonio
Canazza, Sergio
De Poli, Giovanni
description The important role of the valence and arousal dimensions in representing and recognizing affective qualities in music is well established. There is less evidence for the contribution of secondary dimensions such as potency, tension and energy. In particular, previous studies failed to find significant relations between computable musical features and affective dimensions other than valence and arousal. Here we present two experiments aiming at assessing how musical features, directly computable from complex audio excerpts, are related to secondary emotion dimensions. To this aim, we imposed some constraints on the musical features, namely modality and tempo, of the stimuli.The results show that although arousal and valence dominate for many musical features, it is possible to identify features, in particular Roughness, Loudness, and SpectralFlux, that are significantly related to the potency dimension. As far as we know, this is the first study that gained more insight into the affective potency in the music domain by using real music recordings and a computational approach.
doi_str_mv 10.1109/TAFFC.2014.2343222
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_6866179</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6866179</ieee_id><sourcerecordid>3931979561</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-5849b943285da4db706b2215e6dd94ec38a7900a996ad6e5b9af0a2689f9e28b3</originalsourceid><addsrcrecordid>eNpNkE9Lw0AQxRdRsGi_gF4WPKfun-wm4y0Gq0JFxep12SQTTVmTupsI_famtohzeXN4b-bxI-SMsxnnDC6X2XyezwTj8UzIWAohDsiEQwyRZLE6_Lcfk2kIKzaOlFKLZEJecjeEHn3TvtOsrrHsm2-kz4N1Td9goF1Nc2dDaErr6MMw6hW9xk3XVrT_QPpmHbYlRpnvhjA6npxt8ZQc1dYFnO71hLzOb5b5XbR4vL3Ps0VUClB9pNIYChj7pqqycVUkTBdCcIW6qiDGUqY2AcYsgLaVRlWArZkVOoUaUKSFPCEXu7tr330NGHqz6gbfji8NTxQoxhIpRpfYuUrfheCxNmvffFq_MZyZLT_zy89s-Zk9vzF0vgs1iPgX0KnWPAH5A47yauc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1759500732</pqid></control><display><type>article</type><title>Clustering Affective Qualities of Classical Music: Beyond the Valence-Arousal Plane</title><source>IEEE Electronic Library (IEL)</source><creator>Roda, Antonio ; Canazza, Sergio ; De Poli, Giovanni</creator><creatorcontrib>Roda, Antonio ; Canazza, Sergio ; De Poli, Giovanni</creatorcontrib><description>The important role of the valence and arousal dimensions in representing and recognizing affective qualities in music is well established. There is less evidence for the contribution of secondary dimensions such as potency, tension and energy. In particular, previous studies failed to find significant relations between computable musical features and affective dimensions other than valence and arousal. Here we present two experiments aiming at assessing how musical features, directly computable from complex audio excerpts, are related to secondary emotion dimensions. To this aim, we imposed some constraints on the musical features, namely modality and tempo, of the stimuli.The results show that although arousal and valence dominate for many musical features, it is possible to identify features, in particular Roughness, Loudness, and SpectralFlux, that are significantly related to the potency dimension. As far as we know, this is the first study that gained more insight into the affective potency in the music domain by using real music recordings and a computational approach.</description><identifier>ISSN: 1949-3045</identifier><identifier>EISSN: 1949-3045</identifier><identifier>DOI: 10.1109/TAFFC.2014.2343222</identifier><identifier>CODEN: ITACBQ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Emotion recognition ; Music ; Music information retrieval ; Physiology ; Stress ; User interfaces</subject><ispartof>IEEE transactions on affective computing, 2014-10, Vol.5 (4), p.364-376</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Oct-Dec 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-5849b943285da4db706b2215e6dd94ec38a7900a996ad6e5b9af0a2689f9e28b3</citedby><cites>FETCH-LOGICAL-c295t-5849b943285da4db706b2215e6dd94ec38a7900a996ad6e5b9af0a2689f9e28b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6866179$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6866179$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Roda, Antonio</creatorcontrib><creatorcontrib>Canazza, Sergio</creatorcontrib><creatorcontrib>De Poli, Giovanni</creatorcontrib><title>Clustering Affective Qualities of Classical Music: Beyond the Valence-Arousal Plane</title><title>IEEE transactions on affective computing</title><addtitle>T-AFFC</addtitle><description>The important role of the valence and arousal dimensions in representing and recognizing affective qualities in music is well established. There is less evidence for the contribution of secondary dimensions such as potency, tension and energy. In particular, previous studies failed to find significant relations between computable musical features and affective dimensions other than valence and arousal. Here we present two experiments aiming at assessing how musical features, directly computable from complex audio excerpts, are related to secondary emotion dimensions. To this aim, we imposed some constraints on the musical features, namely modality and tempo, of the stimuli.The results show that although arousal and valence dominate for many musical features, it is possible to identify features, in particular Roughness, Loudness, and SpectralFlux, that are significantly related to the potency dimension. As far as we know, this is the first study that gained more insight into the affective potency in the music domain by using real music recordings and a computational approach.</description><subject>Emotion recognition</subject><subject>Music</subject><subject>Music information retrieval</subject><subject>Physiology</subject><subject>Stress</subject><subject>User interfaces</subject><issn>1949-3045</issn><issn>1949-3045</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE9Lw0AQxRdRsGi_gF4WPKfun-wm4y0Gq0JFxep12SQTTVmTupsI_famtohzeXN4b-bxI-SMsxnnDC6X2XyezwTj8UzIWAohDsiEQwyRZLE6_Lcfk2kIKzaOlFKLZEJecjeEHn3TvtOsrrHsm2-kz4N1Td9goF1Nc2dDaErr6MMw6hW9xk3XVrT_QPpmHbYlRpnvhjA6npxt8ZQc1dYFnO71hLzOb5b5XbR4vL3Ps0VUClB9pNIYChj7pqqycVUkTBdCcIW6qiDGUqY2AcYsgLaVRlWArZkVOoUaUKSFPCEXu7tr330NGHqz6gbfji8NTxQoxhIpRpfYuUrfheCxNmvffFq_MZyZLT_zy89s-Zk9vzF0vgs1iPgX0KnWPAH5A47yauc</recordid><startdate>201410</startdate><enddate>201410</enddate><creator>Roda, Antonio</creator><creator>Canazza, Sergio</creator><creator>De Poli, Giovanni</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201410</creationdate><title>Clustering Affective Qualities of Classical Music: Beyond the Valence-Arousal Plane</title><author>Roda, Antonio ; Canazza, Sergio ; De Poli, Giovanni</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-5849b943285da4db706b2215e6dd94ec38a7900a996ad6e5b9af0a2689f9e28b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Emotion recognition</topic><topic>Music</topic><topic>Music information retrieval</topic><topic>Physiology</topic><topic>Stress</topic><topic>User interfaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roda, Antonio</creatorcontrib><creatorcontrib>Canazza, Sergio</creatorcontrib><creatorcontrib>De Poli, Giovanni</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on affective computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Roda, Antonio</au><au>Canazza, Sergio</au><au>De Poli, Giovanni</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Clustering Affective Qualities of Classical Music: Beyond the Valence-Arousal Plane</atitle><jtitle>IEEE transactions on affective computing</jtitle><stitle>T-AFFC</stitle><date>2014-10</date><risdate>2014</risdate><volume>5</volume><issue>4</issue><spage>364</spage><epage>376</epage><pages>364-376</pages><issn>1949-3045</issn><eissn>1949-3045</eissn><coden>ITACBQ</coden><abstract>The important role of the valence and arousal dimensions in representing and recognizing affective qualities in music is well established. There is less evidence for the contribution of secondary dimensions such as potency, tension and energy. In particular, previous studies failed to find significant relations between computable musical features and affective dimensions other than valence and arousal. Here we present two experiments aiming at assessing how musical features, directly computable from complex audio excerpts, are related to secondary emotion dimensions. To this aim, we imposed some constraints on the musical features, namely modality and tempo, of the stimuli.The results show that although arousal and valence dominate for many musical features, it is possible to identify features, in particular Roughness, Loudness, and SpectralFlux, that are significantly related to the potency dimension. As far as we know, this is the first study that gained more insight into the affective potency in the music domain by using real music recordings and a computational approach.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TAFFC.2014.2343222</doi><tpages>13</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1949-3045
ispartof IEEE transactions on affective computing, 2014-10, Vol.5 (4), p.364-376
issn 1949-3045
1949-3045
language eng
recordid cdi_ieee_primary_6866179
source IEEE Electronic Library (IEL)
subjects Emotion recognition
Music
Music information retrieval
Physiology
Stress
User interfaces
title Clustering Affective Qualities of Classical Music: Beyond the Valence-Arousal Plane
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T23%3A50%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Clustering%20Affective%20Qualities%20of%20Classical%20Music:%20Beyond%20the%20Valence-Arousal%20Plane&rft.jtitle=IEEE%20transactions%20on%20affective%20computing&rft.au=Roda,%20Antonio&rft.date=2014-10&rft.volume=5&rft.issue=4&rft.spage=364&rft.epage=376&rft.pages=364-376&rft.issn=1949-3045&rft.eissn=1949-3045&rft.coden=ITACBQ&rft_id=info:doi/10.1109/TAFFC.2014.2343222&rft_dat=%3Cproquest_RIE%3E3931979561%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1759500732&rft_id=info:pmid/&rft_ieee_id=6866179&rfr_iscdi=true