Breast tissue removal for enhancing microcalcification cluster detection in mammograms
In this paper, we propose a novel normal breast tissue removal approach using sparse representation (SR), in order to emphasize subtle microcalcifications (MCs) for MC cluster (MCC) detection in mammograms. The proposed method adopts SR to estimate normal breast tissue texture only; such that the di...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 366 |
---|---|
container_issue | |
container_start_page | 363 |
container_title | |
container_volume | |
creator | Baddar, Wissam J. Dae Hoe Kim Yong Man Ro |
description | In this paper, we propose a novel normal breast tissue removal approach using sparse representation (SR), in order to emphasize subtle microcalcifications (MCs) for MC cluster (MCC) detection in mammograms. The proposed method adopts SR to estimate normal breast tissue texture only; such that the difference between estimated image and the original image can emphasize subtle MCs. Comparative experiments have been conducted to validate the effectiveness of the proposed preprocessing with the publicly available DDSM database. The experimental results showed that the MCC detection performances in terms of FROC were improved with the proposed approach compared with the commonly used wavelet decomposition approach. Furthermore, the improved detection performance increases the overall performance for the malignant MCC classification. |
doi_str_mv | 10.1109/BHI.2014.6864378 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_RIE</sourceid><recordid>TN_cdi_ieee_primary_6864378</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6864378</ieee_id><sourcerecordid>6864378</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-c8446233d0372892b6fa56708ded4690741da031d058d28eee8a7f09fb0419d33</originalsourceid><addsrcrecordid>eNo1kEtLAzEcxKMoWGvvgpd8gV3_eTSPoy3WFgpeiteS5lEjm11JUsFv76J1LjP8BuYwCN0TaAkB_bhYb1oKhLdCCc6kukC3hEutKWFEX6IJJUI1lIK6-s9E8xs0K-UDRqkRaTFBb4vsTam4xlJOHmefhi_T4TBk7Pt309vYH3GKNg_WdDaGaE2NQ49tdyrVZ-x89faXxB4nk9JwzCaVO3QdTFf87OxTtFs975brZvv6slk-bZuooTZWcS4oYw6YpErTgwhmLiQo5x0XGiQnzgAjDubKUeW9V0YG0OEAnGjH2BQ9_M3Gsdt_5phM_t6fH2E_tpJTZA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Breast tissue removal for enhancing microcalcification cluster detection in mammograms</title><source>IEEE Electronic Library (IEL)</source><creator>Baddar, Wissam J. ; Dae Hoe Kim ; Yong Man Ro</creator><creatorcontrib>Baddar, Wissam J. ; Dae Hoe Kim ; Yong Man Ro</creatorcontrib><description>In this paper, we propose a novel normal breast tissue removal approach using sparse representation (SR), in order to emphasize subtle microcalcifications (MCs) for MC cluster (MCC) detection in mammograms. The proposed method adopts SR to estimate normal breast tissue texture only; such that the difference between estimated image and the original image can emphasize subtle MCs. Comparative experiments have been conducted to validate the effectiveness of the proposed preprocessing with the publicly available DDSM database. The experimental results showed that the MCC detection performances in terms of FROC were improved with the proposed approach compared with the commonly used wavelet decomposition approach. Furthermore, the improved detection performance increases the overall performance for the malignant MCC classification.</description><identifier>ISSN: 2168-2194</identifier><identifier>EISSN: 2168-2208</identifier><identifier>EISBN: 1479921319</identifier><identifier>EISBN: 9781479921317</identifier><identifier>DOI: 10.1109/BHI.2014.6864378</identifier><language>eng</language><publisher>IEEE</publisher><subject>Breast tissue ; Cancer ; Delta-sigma modulation ; Dictionaries ; Image reconstruction ; Sensitivity</subject><ispartof>IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI), 2014, p.363-366</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6864378$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,792,23909,23910,25118,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6864378$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Baddar, Wissam J.</creatorcontrib><creatorcontrib>Dae Hoe Kim</creatorcontrib><creatorcontrib>Yong Man Ro</creatorcontrib><title>Breast tissue removal for enhancing microcalcification cluster detection in mammograms</title><title>IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI)</title><addtitle>BHI</addtitle><description>In this paper, we propose a novel normal breast tissue removal approach using sparse representation (SR), in order to emphasize subtle microcalcifications (MCs) for MC cluster (MCC) detection in mammograms. The proposed method adopts SR to estimate normal breast tissue texture only; such that the difference between estimated image and the original image can emphasize subtle MCs. Comparative experiments have been conducted to validate the effectiveness of the proposed preprocessing with the publicly available DDSM database. The experimental results showed that the MCC detection performances in terms of FROC were improved with the proposed approach compared with the commonly used wavelet decomposition approach. Furthermore, the improved detection performance increases the overall performance for the malignant MCC classification.</description><subject>Breast tissue</subject><subject>Cancer</subject><subject>Delta-sigma modulation</subject><subject>Dictionaries</subject><subject>Image reconstruction</subject><subject>Sensitivity</subject><issn>2168-2194</issn><issn>2168-2208</issn><isbn>1479921319</isbn><isbn>9781479921317</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2014</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kEtLAzEcxKMoWGvvgpd8gV3_eTSPoy3WFgpeiteS5lEjm11JUsFv76J1LjP8BuYwCN0TaAkB_bhYb1oKhLdCCc6kukC3hEutKWFEX6IJJUI1lIK6-s9E8xs0K-UDRqkRaTFBb4vsTam4xlJOHmefhi_T4TBk7Pt309vYH3GKNg_WdDaGaE2NQ49tdyrVZ-x89faXxB4nk9JwzCaVO3QdTFf87OxTtFs975brZvv6slk-bZuooTZWcS4oYw6YpErTgwhmLiQo5x0XGiQnzgAjDubKUeW9V0YG0OEAnGjH2BQ9_M3Gsdt_5phM_t6fH2E_tpJTZA</recordid><startdate>201406</startdate><enddate>201406</enddate><creator>Baddar, Wissam J.</creator><creator>Dae Hoe Kim</creator><creator>Yong Man Ro</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201406</creationdate><title>Breast tissue removal for enhancing microcalcification cluster detection in mammograms</title><author>Baddar, Wissam J. ; Dae Hoe Kim ; Yong Man Ro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-c8446233d0372892b6fa56708ded4690741da031d058d28eee8a7f09fb0419d33</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Breast tissue</topic><topic>Cancer</topic><topic>Delta-sigma modulation</topic><topic>Dictionaries</topic><topic>Image reconstruction</topic><topic>Sensitivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baddar, Wissam J.</creatorcontrib><creatorcontrib>Dae Hoe Kim</creatorcontrib><creatorcontrib>Yong Man Ro</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Baddar, Wissam J.</au><au>Dae Hoe Kim</au><au>Yong Man Ro</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Breast tissue removal for enhancing microcalcification cluster detection in mammograms</atitle><btitle>IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI)</btitle><stitle>BHI</stitle><date>2014-06</date><risdate>2014</risdate><spage>363</spage><epage>366</epage><pages>363-366</pages><issn>2168-2194</issn><eissn>2168-2208</eissn><eisbn>1479921319</eisbn><eisbn>9781479921317</eisbn><abstract>In this paper, we propose a novel normal breast tissue removal approach using sparse representation (SR), in order to emphasize subtle microcalcifications (MCs) for MC cluster (MCC) detection in mammograms. The proposed method adopts SR to estimate normal breast tissue texture only; such that the difference between estimated image and the original image can emphasize subtle MCs. Comparative experiments have been conducted to validate the effectiveness of the proposed preprocessing with the publicly available DDSM database. The experimental results showed that the MCC detection performances in terms of FROC were improved with the proposed approach compared with the commonly used wavelet decomposition approach. Furthermore, the improved detection performance increases the overall performance for the malignant MCC classification.</abstract><pub>IEEE</pub><doi>10.1109/BHI.2014.6864378</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2168-2194 |
ispartof | IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI), 2014, p.363-366 |
issn | 2168-2194 2168-2208 |
language | eng |
recordid | cdi_ieee_primary_6864378 |
source | IEEE Electronic Library (IEL) |
subjects | Breast tissue Cancer Delta-sigma modulation Dictionaries Image reconstruction Sensitivity |
title | Breast tissue removal for enhancing microcalcification cluster detection in mammograms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T22%3A55%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Breast%20tissue%20removal%20for%20enhancing%20microcalcification%20cluster%20detection%20in%20mammograms&rft.btitle=IEEE-EMBS%20International%20Conference%20on%20Biomedical%20and%20Health%20Informatics%20(BHI)&rft.au=Baddar,%20Wissam%20J.&rft.date=2014-06&rft.spage=363&rft.epage=366&rft.pages=363-366&rft.issn=2168-2194&rft.eissn=2168-2208&rft_id=info:doi/10.1109/BHI.2014.6864378&rft_dat=%3Cieee_RIE%3E6864378%3C/ieee_RIE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1479921319&rft.eisbn_list=9781479921317&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6864378&rfr_iscdi=true |