Cancellation of Doppler intrinsic spectral broadening using ultrafast Doppler imaging

Although conventional pulse-wave Doppler has proved to be a valuable diagnostic method for many vascular pathologies, it is hampered by issues related to repeatability as well as problems associated with quantification and system-dependent variability. These limitations are due to intrinsic spectral...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on ultrasonics, ferroelectrics, and frequency control ferroelectrics, and frequency control, 2014-08, Vol.61 (8), p.1396-1408
Hauptverfasser: Osmanski, Bruno-Felix, Bercoff, Jeremy, Montaldo, Gabriel, Loupas, Thanasis, Fink, Mathias, Tanter, Mickael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1408
container_issue 8
container_start_page 1396
container_title IEEE transactions on ultrasonics, ferroelectrics, and frequency control
container_volume 61
creator Osmanski, Bruno-Felix
Bercoff, Jeremy
Montaldo, Gabriel
Loupas, Thanasis
Fink, Mathias
Tanter, Mickael
description Although conventional pulse-wave Doppler has proved to be a valuable diagnostic method for many vascular pathologies, it is hampered by issues related to repeatability as well as problems associated with quantification and system-dependent variability. These limitations are due to intrinsic spectral broadening on the Doppler spectrum, resulting from the directivity pattern of the ultrasound focused beam. Here, we develop a new spatial statistical technique, Doppler frequency spatial analysis (DFSA), which is based on ultrafast plane-wave imaging. Similar to standard pulse-wave Doppler, which is commonly used by sonographers, it yields a two-dimensional output (frequency versus time), while dramatically reducing the presence of intrinsic spectral broadening on the Doppler spectra. Therefore, the technique is much more sensitive to the velocity profile and turbulences than the standard pulse-wave Doppler. The proposed technique could improve diagnosis of vascular diseases, including arterial plaque characterization. Moreover, by summarizing all main information contained in the ultrafast Doppler acquisition, it permits a direct visualization of the data within the velocity profile. Here, we have compared our novel statistical technique to the standard pulse-wave Doppler approach during in vivo imaging of the human carotid artery. Notably, we achieved a greater than 4-fold reduction in intrinsic spectral broadening.
doi_str_mv 10.1109/TUFFC.2014.3049
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_6863863</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6863863</ieee_id><sourcerecordid>3409931201</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-fbed910da4eb45e3412ab6763466e7e5c4fda524b06d38b11f6ab8156076d24e3</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhhdRsFbPHrwEvHhJu99JjhJbFQpe2vOym0xKSrobd5OD_95NKwrCMAMzzzvMvAjdE7wgBBfL7W69LhcUE75gmBcXaEYEFWleCHGJZjjPRcowwdfoJoQDjhgv6AztSm0r6Do9tM4mrkleXN934JPWDr61oa2S0EM1eN0lxjtdg23tPhnDKXex3-gw_KmOeh8nt-iq0V2Au586R7v1alu-pZuP1_fyeZNWjNIhbQzUBcG15mC4AMYJ1UZmknEpIQNR8abWgnKDZc1yQ0gjtcmJkDiTNeXA5ujpvLf37nOEMKhjG07vWHBjUESIIsOMURzRx3_owY3exusmSlApOGWRWp6pyrsQPDSq9_En_6UIVpPN6mSzmmxWk81R8XBWtADwS8tcshjsG_UveUo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1555265423</pqid></control><display><type>article</type><title>Cancellation of Doppler intrinsic spectral broadening using ultrafast Doppler imaging</title><source>IEEE Electronic Library (IEL)</source><creator>Osmanski, Bruno-Felix ; Bercoff, Jeremy ; Montaldo, Gabriel ; Loupas, Thanasis ; Fink, Mathias ; Tanter, Mickael</creator><creatorcontrib>Osmanski, Bruno-Felix ; Bercoff, Jeremy ; Montaldo, Gabriel ; Loupas, Thanasis ; Fink, Mathias ; Tanter, Mickael</creatorcontrib><description>Although conventional pulse-wave Doppler has proved to be a valuable diagnostic method for many vascular pathologies, it is hampered by issues related to repeatability as well as problems associated with quantification and system-dependent variability. These limitations are due to intrinsic spectral broadening on the Doppler spectrum, resulting from the directivity pattern of the ultrasound focused beam. Here, we develop a new spatial statistical technique, Doppler frequency spatial analysis (DFSA), which is based on ultrafast plane-wave imaging. Similar to standard pulse-wave Doppler, which is commonly used by sonographers, it yields a two-dimensional output (frequency versus time), while dramatically reducing the presence of intrinsic spectral broadening on the Doppler spectra. Therefore, the technique is much more sensitive to the velocity profile and turbulences than the standard pulse-wave Doppler. The proposed technique could improve diagnosis of vascular diseases, including arterial plaque characterization. Moreover, by summarizing all main information contained in the ultrafast Doppler acquisition, it permits a direct visualization of the data within the velocity profile. Here, we have compared our novel statistical technique to the standard pulse-wave Doppler approach during in vivo imaging of the human carotid artery. Notably, we achieved a greater than 4-fold reduction in intrinsic spectral broadening.</description><identifier>ISSN: 0885-3010</identifier><identifier>EISSN: 1525-8955</identifier><identifier>DOI: 10.1109/TUFFC.2014.3049</identifier><identifier>CODEN: ITUCER</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Bandwidth ; Beams (radiation) ; Blood ; Diseases ; Doppler ; Doppler effect ; Image resolution ; Imaging ; Probes ; Reduction ; Spectra ; Ultrasonic imaging</subject><ispartof>IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2014-08, Vol.61 (8), p.1396-1408</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Aug 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-fbed910da4eb45e3412ab6763466e7e5c4fda524b06d38b11f6ab8156076d24e3</citedby><cites>FETCH-LOGICAL-c322t-fbed910da4eb45e3412ab6763466e7e5c4fda524b06d38b11f6ab8156076d24e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6863863$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6863863$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Osmanski, Bruno-Felix</creatorcontrib><creatorcontrib>Bercoff, Jeremy</creatorcontrib><creatorcontrib>Montaldo, Gabriel</creatorcontrib><creatorcontrib>Loupas, Thanasis</creatorcontrib><creatorcontrib>Fink, Mathias</creatorcontrib><creatorcontrib>Tanter, Mickael</creatorcontrib><title>Cancellation of Doppler intrinsic spectral broadening using ultrafast Doppler imaging</title><title>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</title><addtitle>T-UFFC</addtitle><description>Although conventional pulse-wave Doppler has proved to be a valuable diagnostic method for many vascular pathologies, it is hampered by issues related to repeatability as well as problems associated with quantification and system-dependent variability. These limitations are due to intrinsic spectral broadening on the Doppler spectrum, resulting from the directivity pattern of the ultrasound focused beam. Here, we develop a new spatial statistical technique, Doppler frequency spatial analysis (DFSA), which is based on ultrafast plane-wave imaging. Similar to standard pulse-wave Doppler, which is commonly used by sonographers, it yields a two-dimensional output (frequency versus time), while dramatically reducing the presence of intrinsic spectral broadening on the Doppler spectra. Therefore, the technique is much more sensitive to the velocity profile and turbulences than the standard pulse-wave Doppler. The proposed technique could improve diagnosis of vascular diseases, including arterial plaque characterization. Moreover, by summarizing all main information contained in the ultrafast Doppler acquisition, it permits a direct visualization of the data within the velocity profile. Here, we have compared our novel statistical technique to the standard pulse-wave Doppler approach during in vivo imaging of the human carotid artery. Notably, we achieved a greater than 4-fold reduction in intrinsic spectral broadening.</description><subject>Bandwidth</subject><subject>Beams (radiation)</subject><subject>Blood</subject><subject>Diseases</subject><subject>Doppler</subject><subject>Doppler effect</subject><subject>Image resolution</subject><subject>Imaging</subject><subject>Probes</subject><subject>Reduction</subject><subject>Spectra</subject><subject>Ultrasonic imaging</subject><issn>0885-3010</issn><issn>1525-8955</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1Lw0AQhhdRsFbPHrwEvHhJu99JjhJbFQpe2vOym0xKSrobd5OD_95NKwrCMAMzzzvMvAjdE7wgBBfL7W69LhcUE75gmBcXaEYEFWleCHGJZjjPRcowwdfoJoQDjhgv6AztSm0r6Do9tM4mrkleXN934JPWDr61oa2S0EM1eN0lxjtdg23tPhnDKXex3-gw_KmOeh8nt-iq0V2Au586R7v1alu-pZuP1_fyeZNWjNIhbQzUBcG15mC4AMYJ1UZmknEpIQNR8abWgnKDZc1yQ0gjtcmJkDiTNeXA5ujpvLf37nOEMKhjG07vWHBjUESIIsOMURzRx3_owY3exusmSlApOGWRWp6pyrsQPDSq9_En_6UIVpPN6mSzmmxWk81R8XBWtADwS8tcshjsG_UveUo</recordid><startdate>20140801</startdate><enddate>20140801</enddate><creator>Osmanski, Bruno-Felix</creator><creator>Bercoff, Jeremy</creator><creator>Montaldo, Gabriel</creator><creator>Loupas, Thanasis</creator><creator>Fink, Mathias</creator><creator>Tanter, Mickael</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>20140801</creationdate><title>Cancellation of Doppler intrinsic spectral broadening using ultrafast Doppler imaging</title><author>Osmanski, Bruno-Felix ; Bercoff, Jeremy ; Montaldo, Gabriel ; Loupas, Thanasis ; Fink, Mathias ; Tanter, Mickael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-fbed910da4eb45e3412ab6763466e7e5c4fda524b06d38b11f6ab8156076d24e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Bandwidth</topic><topic>Beams (radiation)</topic><topic>Blood</topic><topic>Diseases</topic><topic>Doppler</topic><topic>Doppler effect</topic><topic>Image resolution</topic><topic>Imaging</topic><topic>Probes</topic><topic>Reduction</topic><topic>Spectra</topic><topic>Ultrasonic imaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Osmanski, Bruno-Felix</creatorcontrib><creatorcontrib>Bercoff, Jeremy</creatorcontrib><creatorcontrib>Montaldo, Gabriel</creatorcontrib><creatorcontrib>Loupas, Thanasis</creatorcontrib><creatorcontrib>Fink, Mathias</creatorcontrib><creatorcontrib>Tanter, Mickael</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Osmanski, Bruno-Felix</au><au>Bercoff, Jeremy</au><au>Montaldo, Gabriel</au><au>Loupas, Thanasis</au><au>Fink, Mathias</au><au>Tanter, Mickael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cancellation of Doppler intrinsic spectral broadening using ultrafast Doppler imaging</atitle><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle><stitle>T-UFFC</stitle><date>2014-08-01</date><risdate>2014</risdate><volume>61</volume><issue>8</issue><spage>1396</spage><epage>1408</epage><pages>1396-1408</pages><issn>0885-3010</issn><eissn>1525-8955</eissn><coden>ITUCER</coden><abstract>Although conventional pulse-wave Doppler has proved to be a valuable diagnostic method for many vascular pathologies, it is hampered by issues related to repeatability as well as problems associated with quantification and system-dependent variability. These limitations are due to intrinsic spectral broadening on the Doppler spectrum, resulting from the directivity pattern of the ultrasound focused beam. Here, we develop a new spatial statistical technique, Doppler frequency spatial analysis (DFSA), which is based on ultrafast plane-wave imaging. Similar to standard pulse-wave Doppler, which is commonly used by sonographers, it yields a two-dimensional output (frequency versus time), while dramatically reducing the presence of intrinsic spectral broadening on the Doppler spectra. Therefore, the technique is much more sensitive to the velocity profile and turbulences than the standard pulse-wave Doppler. The proposed technique could improve diagnosis of vascular diseases, including arterial plaque characterization. Moreover, by summarizing all main information contained in the ultrafast Doppler acquisition, it permits a direct visualization of the data within the velocity profile. Here, we have compared our novel statistical technique to the standard pulse-wave Doppler approach during in vivo imaging of the human carotid artery. Notably, we achieved a greater than 4-fold reduction in intrinsic spectral broadening.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TUFFC.2014.3049</doi><tpages>13</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-3010
ispartof IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2014-08, Vol.61 (8), p.1396-1408
issn 0885-3010
1525-8955
language eng
recordid cdi_ieee_primary_6863863
source IEEE Electronic Library (IEL)
subjects Bandwidth
Beams (radiation)
Blood
Diseases
Doppler
Doppler effect
Image resolution
Imaging
Probes
Reduction
Spectra
Ultrasonic imaging
title Cancellation of Doppler intrinsic spectral broadening using ultrafast Doppler imaging
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T13%3A49%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cancellation%20of%20Doppler%20intrinsic%20spectral%20broadening%20using%20ultrafast%20Doppler%20imaging&rft.jtitle=IEEE%20transactions%20on%20ultrasonics,%20ferroelectrics,%20and%20frequency%20control&rft.au=Osmanski,%20Bruno-Felix&rft.date=2014-08-01&rft.volume=61&rft.issue=8&rft.spage=1396&rft.epage=1408&rft.pages=1396-1408&rft.issn=0885-3010&rft.eissn=1525-8955&rft.coden=ITUCER&rft_id=info:doi/10.1109/TUFFC.2014.3049&rft_dat=%3Cproquest_RIE%3E3409931201%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1555265423&rft_id=info:pmid/&rft_ieee_id=6863863&rfr_iscdi=true