Analysis of traffic distribution in cellular networks

Accurate air interface traffic forecasting and dimensioning is of importance in any cellular network for achieving cost and quality requirements. Previous studies of traffic modeling in cellular networks have tended to derive distributions to fit the measured data for the arrival rate and call holdi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Tunnicliffe, G.W., Murch, A.R., Sathyendran, A., Smith, P.J.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1988 vol.3
container_issue
container_start_page 1984
container_title
container_volume 3
creator Tunnicliffe, G.W.
Murch, A.R.
Sathyendran, A.
Smith, P.J.
description Accurate air interface traffic forecasting and dimensioning is of importance in any cellular network for achieving cost and quality requirements. Previous studies of traffic modeling in cellular networks have tended to derive distributions to fit the measured data for the arrival rate and call holding processes or derive expressions for call blocking on the air interface for different handover and channel assignment procedures. In most cases it is assumed that the Erlang B model is not sufficiently accurate and some other call blocking model is required. However, there have not been a large number of studies published on how accurate or otherwise (and under what circumstances) the Erlang B model is in modeling air interface call blocking in practical cellular networks. In this paper call blocking measurements of the air interface of a "real" cellular network are presented. A statistical analysis is undertaken which shows that the measured data is correctly modeled by Erlang B at a level of significance of 0.05 when the number of channels are greater than 12 and the blocking experienced is greater than 1%. For available channels less than 12 and blocking less than 1% the Erlang B model overestimates the blocking.
doi_str_mv 10.1109/VETEC.1998.686103
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_686103</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>686103</ieee_id><sourcerecordid>686103</sourcerecordid><originalsourceid>FETCH-LOGICAL-i147t-cef4ff5ae23ef55955d04a000e1785da44bcd3ea82716a69ef25fc8ad12e5d7f3</originalsourceid><addsrcrecordid>eNotj8tOwzAURC0eEqH0A2DlH0i4ftzYWVZReEiV2BS2lRtfS4aQIDsV6t8TqcxmVmeOhrF7AZUQ0Dx-dLuurUTT2Kq2tQB1wQqJxpRS13jJbsFYUFpJ0FesWAAoFSh7w9Y5f8ISBCMACoab0Q2nHDOfAp-TCyH23Mc8p3g4znEaeRx5T8NwHFziI82_U_rKd-w6uCHT-r9X7P2p27Uv5fbt-bXdbMsotJnLnoIOAR1JRQGxQfSg3WInYSx6p_Wh94qclUbUrm4oSAy9dV5IQm-CWrGH824kov1Pit8unfbnw-oPeBRIfQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Analysis of traffic distribution in cellular networks</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Tunnicliffe, G.W. ; Murch, A.R. ; Sathyendran, A. ; Smith, P.J.</creator><creatorcontrib>Tunnicliffe, G.W. ; Murch, A.R. ; Sathyendran, A. ; Smith, P.J.</creatorcontrib><description>Accurate air interface traffic forecasting and dimensioning is of importance in any cellular network for achieving cost and quality requirements. Previous studies of traffic modeling in cellular networks have tended to derive distributions to fit the measured data for the arrival rate and call holding processes or derive expressions for call blocking on the air interface for different handover and channel assignment procedures. In most cases it is assumed that the Erlang B model is not sufficiently accurate and some other call blocking model is required. However, there have not been a large number of studies published on how accurate or otherwise (and under what circumstances) the Erlang B model is in modeling air interface call blocking in practical cellular networks. In this paper call blocking measurements of the air interface of a "real" cellular network are presented. A statistical analysis is undertaken which shows that the measured data is correctly modeled by Erlang B at a level of significance of 0.05 when the number of channels are greater than 12 and the blocking experienced is greater than 1%. For available channels less than 12 and blocking less than 1% the Erlang B model overestimates the blocking.</description><identifier>ISSN: 1090-3038</identifier><identifier>ISBN: 0780343204</identifier><identifier>ISBN: 9780780343207</identifier><identifier>EISSN: 2577-2465</identifier><identifier>DOI: 10.1109/VETEC.1998.686103</identifier><language>eng</language><publisher>IEEE</publisher><subject>Circuits ; Costs ; Frequency division multiaccess ; Intelligent networks ; Land mobile radio cellular systems ; Probability distribution ; State estimation ; Statistical analysis ; Telecommunication traffic ; Traffic control</subject><ispartof>VTC '98. 48th IEEE Vehicular Technology Conference. Pathway to Global Wireless Revolution (Cat. No.98CH36151), 1998, Vol.3, p.1984-1988 vol.3</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/686103$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>310,311,781,785,790,791,2059,4051,4052,27930,54925</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/686103$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tunnicliffe, G.W.</creatorcontrib><creatorcontrib>Murch, A.R.</creatorcontrib><creatorcontrib>Sathyendran, A.</creatorcontrib><creatorcontrib>Smith, P.J.</creatorcontrib><title>Analysis of traffic distribution in cellular networks</title><title>VTC '98. 48th IEEE Vehicular Technology Conference. Pathway to Global Wireless Revolution (Cat. No.98CH36151)</title><addtitle>VETEC</addtitle><description>Accurate air interface traffic forecasting and dimensioning is of importance in any cellular network for achieving cost and quality requirements. Previous studies of traffic modeling in cellular networks have tended to derive distributions to fit the measured data for the arrival rate and call holding processes or derive expressions for call blocking on the air interface for different handover and channel assignment procedures. In most cases it is assumed that the Erlang B model is not sufficiently accurate and some other call blocking model is required. However, there have not been a large number of studies published on how accurate or otherwise (and under what circumstances) the Erlang B model is in modeling air interface call blocking in practical cellular networks. In this paper call blocking measurements of the air interface of a "real" cellular network are presented. A statistical analysis is undertaken which shows that the measured data is correctly modeled by Erlang B at a level of significance of 0.05 when the number of channels are greater than 12 and the blocking experienced is greater than 1%. For available channels less than 12 and blocking less than 1% the Erlang B model overestimates the blocking.</description><subject>Circuits</subject><subject>Costs</subject><subject>Frequency division multiaccess</subject><subject>Intelligent networks</subject><subject>Land mobile radio cellular systems</subject><subject>Probability distribution</subject><subject>State estimation</subject><subject>Statistical analysis</subject><subject>Telecommunication traffic</subject><subject>Traffic control</subject><issn>1090-3038</issn><issn>2577-2465</issn><isbn>0780343204</isbn><isbn>9780780343207</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1998</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj8tOwzAURC0eEqH0A2DlH0i4ftzYWVZReEiV2BS2lRtfS4aQIDsV6t8TqcxmVmeOhrF7AZUQ0Dx-dLuurUTT2Kq2tQB1wQqJxpRS13jJbsFYUFpJ0FesWAAoFSh7w9Y5f8ISBCMACoab0Q2nHDOfAp-TCyH23Mc8p3g4znEaeRx5T8NwHFziI82_U_rKd-w6uCHT-r9X7P2p27Uv5fbt-bXdbMsotJnLnoIOAR1JRQGxQfSg3WInYSx6p_Wh94qclUbUrm4oSAy9dV5IQm-CWrGH824kov1Pit8unfbnw-oPeBRIfQ</recordid><startdate>1998</startdate><enddate>1998</enddate><creator>Tunnicliffe, G.W.</creator><creator>Murch, A.R.</creator><creator>Sathyendran, A.</creator><creator>Smith, P.J.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>1998</creationdate><title>Analysis of traffic distribution in cellular networks</title><author>Tunnicliffe, G.W. ; Murch, A.R. ; Sathyendran, A. ; Smith, P.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i147t-cef4ff5ae23ef55955d04a000e1785da44bcd3ea82716a69ef25fc8ad12e5d7f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Circuits</topic><topic>Costs</topic><topic>Frequency division multiaccess</topic><topic>Intelligent networks</topic><topic>Land mobile radio cellular systems</topic><topic>Probability distribution</topic><topic>State estimation</topic><topic>Statistical analysis</topic><topic>Telecommunication traffic</topic><topic>Traffic control</topic><toplevel>online_resources</toplevel><creatorcontrib>Tunnicliffe, G.W.</creatorcontrib><creatorcontrib>Murch, A.R.</creatorcontrib><creatorcontrib>Sathyendran, A.</creatorcontrib><creatorcontrib>Smith, P.J.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tunnicliffe, G.W.</au><au>Murch, A.R.</au><au>Sathyendran, A.</au><au>Smith, P.J.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Analysis of traffic distribution in cellular networks</atitle><btitle>VTC '98. 48th IEEE Vehicular Technology Conference. Pathway to Global Wireless Revolution (Cat. No.98CH36151)</btitle><stitle>VETEC</stitle><date>1998</date><risdate>1998</risdate><volume>3</volume><spage>1984</spage><epage>1988 vol.3</epage><pages>1984-1988 vol.3</pages><issn>1090-3038</issn><eissn>2577-2465</eissn><isbn>0780343204</isbn><isbn>9780780343207</isbn><abstract>Accurate air interface traffic forecasting and dimensioning is of importance in any cellular network for achieving cost and quality requirements. Previous studies of traffic modeling in cellular networks have tended to derive distributions to fit the measured data for the arrival rate and call holding processes or derive expressions for call blocking on the air interface for different handover and channel assignment procedures. In most cases it is assumed that the Erlang B model is not sufficiently accurate and some other call blocking model is required. However, there have not been a large number of studies published on how accurate or otherwise (and under what circumstances) the Erlang B model is in modeling air interface call blocking in practical cellular networks. In this paper call blocking measurements of the air interface of a "real" cellular network are presented. A statistical analysis is undertaken which shows that the measured data is correctly modeled by Erlang B at a level of significance of 0.05 when the number of channels are greater than 12 and the blocking experienced is greater than 1%. For available channels less than 12 and blocking less than 1% the Erlang B model overestimates the blocking.</abstract><pub>IEEE</pub><doi>10.1109/VETEC.1998.686103</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1090-3038
ispartof VTC '98. 48th IEEE Vehicular Technology Conference. Pathway to Global Wireless Revolution (Cat. No.98CH36151), 1998, Vol.3, p.1984-1988 vol.3
issn 1090-3038
2577-2465
language eng
recordid cdi_ieee_primary_686103
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Circuits
Costs
Frequency division multiaccess
Intelligent networks
Land mobile radio cellular systems
Probability distribution
State estimation
Statistical analysis
Telecommunication traffic
Traffic control
title Analysis of traffic distribution in cellular networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T23%3A53%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Analysis%20of%20traffic%20distribution%20in%20cellular%20networks&rft.btitle=VTC%20'98.%2048th%20IEEE%20Vehicular%20Technology%20Conference.%20Pathway%20to%20Global%20Wireless%20Revolution%20(Cat.%20No.98CH36151)&rft.au=Tunnicliffe,%20G.W.&rft.date=1998&rft.volume=3&rft.spage=1984&rft.epage=1988%20vol.3&rft.pages=1984-1988%20vol.3&rft.issn=1090-3038&rft.eissn=2577-2465&rft.isbn=0780343204&rft.isbn_list=9780780343207&rft_id=info:doi/10.1109/VETEC.1998.686103&rft_dat=%3Cieee_6IE%3E686103%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=686103&rfr_iscdi=true