Online Embedded Impedance Measurement Using High-Power Battery Charger

This paper presents a new functionality for high-power battery chargers by incorporating an impedance measurement algorithm. The measurement of battery impedance can be performed by the battery charger to provide an accurate equivalent model for battery management purposes. In this paper, an extende...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industry applications 2015-01, Vol.51 (1), p.498-508
Hauptverfasser: Lee, Yong-Duk, Park, Sung-Yeul, Han, Soo-Bin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents a new functionality for high-power battery chargers by incorporating an impedance measurement algorithm. The measurement of battery impedance can be performed by the battery charger to provide an accurate equivalent model for battery management purposes. In this paper, an extended control capability of the onboard battery charger for electric vehicles is used to measure the online impedance of the battery. The impedance of the battery is measured by the following: 1) injecting ac current ripple on top of the dc charging current; 2) transforming voltage and current signals using a virtual α-β stationary coordinate system, a d-q rotating coordinate system, and two filtering systems; 3) calculating ripple voltage and current values; and 4) calculating the angle and magnitude of the impedance. The contributions of this paper are the use of the d-q transformation to attain the battery impedance, theta, and its ripple power, as well as providing a controller design procedure which has impedance measurement capability. The online impedance information can be utilized for diverse applications such as the following: 1) a theta control for sinusoidal current charging; 2) the quantifying of reactive current and voltage; 3) ascertaining the state of charge; 4) determining the state of health; and 5) finding the optimized charging current. Therefore, the benefit of this method is that it can be deployed in already existing high-power chargers regardless of battery chemistry. Validations of the proposed approach were made by comparing measurement values by using a battery charger and a commercial frequency response analyzer.
ISSN:0093-9994
1939-9367
DOI:10.1109/TIA.2014.2336979