Low Spring Index NiTi Coil Actuators for Use in Active Compression Garments

This paper describes the modeling, development, and testing of low spring index nickel titanium (NiTi) coil actuators designed for use in wearable compression garments, and presents a prototype tourniquet system using these actuators. NiTi coil actuators produce both large forces (>1 N) and large...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE/ASME transactions on mechatronics 2015-06, Vol.20 (3), p.1264-1277
Hauptverfasser: Holschuh, Bradley, Obropta, Edward, Newman, Dava
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1277
container_issue 3
container_start_page 1264
container_title IEEE/ASME transactions on mechatronics
container_volume 20
creator Holschuh, Bradley
Obropta, Edward
Newman, Dava
description This paper describes the modeling, development, and testing of low spring index nickel titanium (NiTi) coil actuators designed for use in wearable compression garments, and presents a prototype tourniquet system using these actuators. NiTi coil actuators produce both large forces (>1 N) and large recoverable displacements (>100% length) that are well suited for compression garment design. Thermomechanical coil models are presented that describe temperature and force as a function of nondimensionalized coil geometry, extensional strain, and applied voltage. These models suggest that low spring index coils maximize activation force, and an analytical model is presented to predict garment counter-pressure based on actuator architecture. Several low spring index (C= 3.08) coils were manufactured, annealed, and tested to assess their detwinning and activation characteristics. Results suggest both annealing and applied stress affect activation thresholds. Actuator force increases both with extensional strain and applied voltage up to 7.24 N. A first-generation compression tourniquet system using integrated actuators with direct voltage control of applied pressure is presented, demonstrating >70% increase in applied pressure during activation. This approach enables new, dynamic garments with controllable activation and low effort donning and doffing, with applications ranging from healthcare solutions to advanced space suit design.
doi_str_mv 10.1109/TMECH.2014.2328519
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_6844155</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6844155</ieee_id><sourcerecordid>10_1109_TMECH_2014_2328519</sourcerecordid><originalsourceid>FETCH-LOGICAL-c517t-8cc961a2644a2629141b0deb2aa09f3bc61e4ea180a1d4a3a5a414f72591556f3</originalsourceid><addsrcrecordid>eNo9kM1OwzAQhC0EEqXwAnDxC6R47XUaH6uotBUFDqQSt8hJN8ioTSo7_PTtcWnFZXc12hmNPsZuQYwAhLkvnqb5fCQF4EgqmWkwZ2wABiGJ0tt5vEWmEkSlL9lVCB9CCAQBA_a47L7568679p0v2jX98GdXOJ53bsMndf9p-84H3nSerwJx1x5E90XxYbvzFILrWj6zfkttH67ZRWM3gW5Oe8hWD9MinyfLl9kinyyTWsO4T7K6NilYmSLGIQ0gVGJNlbRWmEZVdQqEZCETFtZoldUWAZux1Aa0Ths1ZPKYW_suBE9NGftvrd-XIMoDjvIPR3nAUZ5wRNPd0eSI6N-QZogxVP0CuI1bOw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Low Spring Index NiTi Coil Actuators for Use in Active Compression Garments</title><source>IEEE Electronic Library (IEL)</source><creator>Holschuh, Bradley ; Obropta, Edward ; Newman, Dava</creator><creatorcontrib>Holschuh, Bradley ; Obropta, Edward ; Newman, Dava</creatorcontrib><description>This paper describes the modeling, development, and testing of low spring index nickel titanium (NiTi) coil actuators designed for use in wearable compression garments, and presents a prototype tourniquet system using these actuators. NiTi coil actuators produce both large forces (&gt;1 N) and large recoverable displacements (&gt;100% length) that are well suited for compression garment design. Thermomechanical coil models are presented that describe temperature and force as a function of nondimensionalized coil geometry, extensional strain, and applied voltage. These models suggest that low spring index coils maximize activation force, and an analytical model is presented to predict garment counter-pressure based on actuator architecture. Several low spring index (C= 3.08) coils were manufactured, annealed, and tested to assess their detwinning and activation characteristics. Results suggest both annealing and applied stress affect activation thresholds. Actuator force increases both with extensional strain and applied voltage up to 7.24 N. A first-generation compression tourniquet system using integrated actuators with direct voltage control of applied pressure is presented, demonstrating &gt;70% increase in applied pressure during activation. This approach enables new, dynamic garments with controllable activation and low effort donning and doffing, with applications ranging from healthcare solutions to advanced space suit design.</description><identifier>ISSN: 1083-4435</identifier><identifier>EISSN: 1941-014X</identifier><identifier>DOI: 10.1109/TMECH.2014.2328519</identifier><identifier>CODEN: IATEFW</identifier><language>eng</language><publisher>IEEE</publisher><subject>Active materials ; Actuators ; Coils ; controllable compression garment design ; Nickel titanium ; nickel titanium (NiTi) coil springs ; shape memory alloy (SMA) actuators ; smart textiles ; Textiles</subject><ispartof>IEEE/ASME transactions on mechatronics, 2015-06, Vol.20 (3), p.1264-1277</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c517t-8cc961a2644a2629141b0deb2aa09f3bc61e4ea180a1d4a3a5a414f72591556f3</citedby><cites>FETCH-LOGICAL-c517t-8cc961a2644a2629141b0deb2aa09f3bc61e4ea180a1d4a3a5a414f72591556f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6844155$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6844155$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Holschuh, Bradley</creatorcontrib><creatorcontrib>Obropta, Edward</creatorcontrib><creatorcontrib>Newman, Dava</creatorcontrib><title>Low Spring Index NiTi Coil Actuators for Use in Active Compression Garments</title><title>IEEE/ASME transactions on mechatronics</title><addtitle>TMECH</addtitle><description>This paper describes the modeling, development, and testing of low spring index nickel titanium (NiTi) coil actuators designed for use in wearable compression garments, and presents a prototype tourniquet system using these actuators. NiTi coil actuators produce both large forces (&gt;1 N) and large recoverable displacements (&gt;100% length) that are well suited for compression garment design. Thermomechanical coil models are presented that describe temperature and force as a function of nondimensionalized coil geometry, extensional strain, and applied voltage. These models suggest that low spring index coils maximize activation force, and an analytical model is presented to predict garment counter-pressure based on actuator architecture. Several low spring index (C= 3.08) coils were manufactured, annealed, and tested to assess their detwinning and activation characteristics. Results suggest both annealing and applied stress affect activation thresholds. Actuator force increases both with extensional strain and applied voltage up to 7.24 N. A first-generation compression tourniquet system using integrated actuators with direct voltage control of applied pressure is presented, demonstrating &gt;70% increase in applied pressure during activation. This approach enables new, dynamic garments with controllable activation and low effort donning and doffing, with applications ranging from healthcare solutions to advanced space suit design.</description><subject>Active materials</subject><subject>Actuators</subject><subject>Coils</subject><subject>controllable compression garment design</subject><subject>Nickel titanium</subject><subject>nickel titanium (NiTi) coil springs</subject><subject>shape memory alloy (SMA) actuators</subject><subject>smart textiles</subject><subject>Textiles</subject><issn>1083-4435</issn><issn>1941-014X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1OwzAQhC0EEqXwAnDxC6R47XUaH6uotBUFDqQSt8hJN8ioTSo7_PTtcWnFZXc12hmNPsZuQYwAhLkvnqb5fCQF4EgqmWkwZ2wABiGJ0tt5vEWmEkSlL9lVCB9CCAQBA_a47L7568679p0v2jX98GdXOJ53bsMndf9p-84H3nSerwJx1x5E90XxYbvzFILrWj6zfkttH67ZRWM3gW5Oe8hWD9MinyfLl9kinyyTWsO4T7K6NilYmSLGIQ0gVGJNlbRWmEZVdQqEZCETFtZoldUWAZux1Aa0Ths1ZPKYW_suBE9NGftvrd-XIMoDjvIPR3nAUZ5wRNPd0eSI6N-QZogxVP0CuI1bOw</recordid><startdate>20150601</startdate><enddate>20150601</enddate><creator>Holschuh, Bradley</creator><creator>Obropta, Edward</creator><creator>Newman, Dava</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20150601</creationdate><title>Low Spring Index NiTi Coil Actuators for Use in Active Compression Garments</title><author>Holschuh, Bradley ; Obropta, Edward ; Newman, Dava</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c517t-8cc961a2644a2629141b0deb2aa09f3bc61e4ea180a1d4a3a5a414f72591556f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Active materials</topic><topic>Actuators</topic><topic>Coils</topic><topic>controllable compression garment design</topic><topic>Nickel titanium</topic><topic>nickel titanium (NiTi) coil springs</topic><topic>shape memory alloy (SMA) actuators</topic><topic>smart textiles</topic><topic>Textiles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Holschuh, Bradley</creatorcontrib><creatorcontrib>Obropta, Edward</creatorcontrib><creatorcontrib>Newman, Dava</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE/ASME transactions on mechatronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Holschuh, Bradley</au><au>Obropta, Edward</au><au>Newman, Dava</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low Spring Index NiTi Coil Actuators for Use in Active Compression Garments</atitle><jtitle>IEEE/ASME transactions on mechatronics</jtitle><stitle>TMECH</stitle><date>2015-06-01</date><risdate>2015</risdate><volume>20</volume><issue>3</issue><spage>1264</spage><epage>1277</epage><pages>1264-1277</pages><issn>1083-4435</issn><eissn>1941-014X</eissn><coden>IATEFW</coden><abstract>This paper describes the modeling, development, and testing of low spring index nickel titanium (NiTi) coil actuators designed for use in wearable compression garments, and presents a prototype tourniquet system using these actuators. NiTi coil actuators produce both large forces (&gt;1 N) and large recoverable displacements (&gt;100% length) that are well suited for compression garment design. Thermomechanical coil models are presented that describe temperature and force as a function of nondimensionalized coil geometry, extensional strain, and applied voltage. These models suggest that low spring index coils maximize activation force, and an analytical model is presented to predict garment counter-pressure based on actuator architecture. Several low spring index (C= 3.08) coils were manufactured, annealed, and tested to assess their detwinning and activation characteristics. Results suggest both annealing and applied stress affect activation thresholds. Actuator force increases both with extensional strain and applied voltage up to 7.24 N. A first-generation compression tourniquet system using integrated actuators with direct voltage control of applied pressure is presented, demonstrating &gt;70% increase in applied pressure during activation. This approach enables new, dynamic garments with controllable activation and low effort donning and doffing, with applications ranging from healthcare solutions to advanced space suit design.</abstract><pub>IEEE</pub><doi>10.1109/TMECH.2014.2328519</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1083-4435
ispartof IEEE/ASME transactions on mechatronics, 2015-06, Vol.20 (3), p.1264-1277
issn 1083-4435
1941-014X
language eng
recordid cdi_ieee_primary_6844155
source IEEE Electronic Library (IEL)
subjects Active materials
Actuators
Coils
controllable compression garment design
Nickel titanium
nickel titanium (NiTi) coil springs
shape memory alloy (SMA) actuators
smart textiles
Textiles
title Low Spring Index NiTi Coil Actuators for Use in Active Compression Garments
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T05%3A35%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low%20Spring%20Index%20NiTi%20Coil%20Actuators%20for%20Use%20in%20Active%20Compression%20Garments&rft.jtitle=IEEE/ASME%20transactions%20on%20mechatronics&rft.au=Holschuh,%20Bradley&rft.date=2015-06-01&rft.volume=20&rft.issue=3&rft.spage=1264&rft.epage=1277&rft.pages=1264-1277&rft.issn=1083-4435&rft.eissn=1941-014X&rft.coden=IATEFW&rft_id=info:doi/10.1109/TMECH.2014.2328519&rft_dat=%3Ccrossref_RIE%3E10_1109_TMECH_2014_2328519%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6844155&rfr_iscdi=true