Low Spring Index NiTi Coil Actuators for Use in Active Compression Garments
This paper describes the modeling, development, and testing of low spring index nickel titanium (NiTi) coil actuators designed for use in wearable compression garments, and presents a prototype tourniquet system using these actuators. NiTi coil actuators produce both large forces (>1 N) and large...
Gespeichert in:
Veröffentlicht in: | IEEE/ASME transactions on mechatronics 2015-06, Vol.20 (3), p.1264-1277 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1277 |
---|---|
container_issue | 3 |
container_start_page | 1264 |
container_title | IEEE/ASME transactions on mechatronics |
container_volume | 20 |
creator | Holschuh, Bradley Obropta, Edward Newman, Dava |
description | This paper describes the modeling, development, and testing of low spring index nickel titanium (NiTi) coil actuators designed for use in wearable compression garments, and presents a prototype tourniquet system using these actuators. NiTi coil actuators produce both large forces (>1 N) and large recoverable displacements (>100% length) that are well suited for compression garment design. Thermomechanical coil models are presented that describe temperature and force as a function of nondimensionalized coil geometry, extensional strain, and applied voltage. These models suggest that low spring index coils maximize activation force, and an analytical model is presented to predict garment counter-pressure based on actuator architecture. Several low spring index (C= 3.08) coils were manufactured, annealed, and tested to assess their detwinning and activation characteristics. Results suggest both annealing and applied stress affect activation thresholds. Actuator force increases both with extensional strain and applied voltage up to 7.24 N. A first-generation compression tourniquet system using integrated actuators with direct voltage control of applied pressure is presented, demonstrating >70% increase in applied pressure during activation. This approach enables new, dynamic garments with controllable activation and low effort donning and doffing, with applications ranging from healthcare solutions to advanced space suit design. |
doi_str_mv | 10.1109/TMECH.2014.2328519 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_6844155</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6844155</ieee_id><sourcerecordid>10_1109_TMECH_2014_2328519</sourcerecordid><originalsourceid>FETCH-LOGICAL-c517t-8cc961a2644a2629141b0deb2aa09f3bc61e4ea180a1d4a3a5a414f72591556f3</originalsourceid><addsrcrecordid>eNo9kM1OwzAQhC0EEqXwAnDxC6R47XUaH6uotBUFDqQSt8hJN8ioTSo7_PTtcWnFZXc12hmNPsZuQYwAhLkvnqb5fCQF4EgqmWkwZ2wABiGJ0tt5vEWmEkSlL9lVCB9CCAQBA_a47L7568679p0v2jX98GdXOJ53bsMndf9p-84H3nSerwJx1x5E90XxYbvzFILrWj6zfkttH67ZRWM3gW5Oe8hWD9MinyfLl9kinyyTWsO4T7K6NilYmSLGIQ0gVGJNlbRWmEZVdQqEZCETFtZoldUWAZux1Aa0Ths1ZPKYW_suBE9NGftvrd-XIMoDjvIPR3nAUZ5wRNPd0eSI6N-QZogxVP0CuI1bOw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Low Spring Index NiTi Coil Actuators for Use in Active Compression Garments</title><source>IEEE Electronic Library (IEL)</source><creator>Holschuh, Bradley ; Obropta, Edward ; Newman, Dava</creator><creatorcontrib>Holschuh, Bradley ; Obropta, Edward ; Newman, Dava</creatorcontrib><description>This paper describes the modeling, development, and testing of low spring index nickel titanium (NiTi) coil actuators designed for use in wearable compression garments, and presents a prototype tourniquet system using these actuators. NiTi coil actuators produce both large forces (>1 N) and large recoverable displacements (>100% length) that are well suited for compression garment design. Thermomechanical coil models are presented that describe temperature and force as a function of nondimensionalized coil geometry, extensional strain, and applied voltage. These models suggest that low spring index coils maximize activation force, and an analytical model is presented to predict garment counter-pressure based on actuator architecture. Several low spring index (C= 3.08) coils were manufactured, annealed, and tested to assess their detwinning and activation characteristics. Results suggest both annealing and applied stress affect activation thresholds. Actuator force increases both with extensional strain and applied voltage up to 7.24 N. A first-generation compression tourniquet system using integrated actuators with direct voltage control of applied pressure is presented, demonstrating >70% increase in applied pressure during activation. This approach enables new, dynamic garments with controllable activation and low effort donning and doffing, with applications ranging from healthcare solutions to advanced space suit design.</description><identifier>ISSN: 1083-4435</identifier><identifier>EISSN: 1941-014X</identifier><identifier>DOI: 10.1109/TMECH.2014.2328519</identifier><identifier>CODEN: IATEFW</identifier><language>eng</language><publisher>IEEE</publisher><subject>Active materials ; Actuators ; Coils ; controllable compression garment design ; Nickel titanium ; nickel titanium (NiTi) coil springs ; shape memory alloy (SMA) actuators ; smart textiles ; Textiles</subject><ispartof>IEEE/ASME transactions on mechatronics, 2015-06, Vol.20 (3), p.1264-1277</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c517t-8cc961a2644a2629141b0deb2aa09f3bc61e4ea180a1d4a3a5a414f72591556f3</citedby><cites>FETCH-LOGICAL-c517t-8cc961a2644a2629141b0deb2aa09f3bc61e4ea180a1d4a3a5a414f72591556f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6844155$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6844155$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Holschuh, Bradley</creatorcontrib><creatorcontrib>Obropta, Edward</creatorcontrib><creatorcontrib>Newman, Dava</creatorcontrib><title>Low Spring Index NiTi Coil Actuators for Use in Active Compression Garments</title><title>IEEE/ASME transactions on mechatronics</title><addtitle>TMECH</addtitle><description>This paper describes the modeling, development, and testing of low spring index nickel titanium (NiTi) coil actuators designed for use in wearable compression garments, and presents a prototype tourniquet system using these actuators. NiTi coil actuators produce both large forces (>1 N) and large recoverable displacements (>100% length) that are well suited for compression garment design. Thermomechanical coil models are presented that describe temperature and force as a function of nondimensionalized coil geometry, extensional strain, and applied voltage. These models suggest that low spring index coils maximize activation force, and an analytical model is presented to predict garment counter-pressure based on actuator architecture. Several low spring index (C= 3.08) coils were manufactured, annealed, and tested to assess their detwinning and activation characteristics. Results suggest both annealing and applied stress affect activation thresholds. Actuator force increases both with extensional strain and applied voltage up to 7.24 N. A first-generation compression tourniquet system using integrated actuators with direct voltage control of applied pressure is presented, demonstrating >70% increase in applied pressure during activation. This approach enables new, dynamic garments with controllable activation and low effort donning and doffing, with applications ranging from healthcare solutions to advanced space suit design.</description><subject>Active materials</subject><subject>Actuators</subject><subject>Coils</subject><subject>controllable compression garment design</subject><subject>Nickel titanium</subject><subject>nickel titanium (NiTi) coil springs</subject><subject>shape memory alloy (SMA) actuators</subject><subject>smart textiles</subject><subject>Textiles</subject><issn>1083-4435</issn><issn>1941-014X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1OwzAQhC0EEqXwAnDxC6R47XUaH6uotBUFDqQSt8hJN8ioTSo7_PTtcWnFZXc12hmNPsZuQYwAhLkvnqb5fCQF4EgqmWkwZ2wABiGJ0tt5vEWmEkSlL9lVCB9CCAQBA_a47L7568679p0v2jX98GdXOJ53bsMndf9p-84H3nSerwJx1x5E90XxYbvzFILrWj6zfkttH67ZRWM3gW5Oe8hWD9MinyfLl9kinyyTWsO4T7K6NilYmSLGIQ0gVGJNlbRWmEZVdQqEZCETFtZoldUWAZux1Aa0Ths1ZPKYW_suBE9NGftvrd-XIMoDjvIPR3nAUZ5wRNPd0eSI6N-QZogxVP0CuI1bOw</recordid><startdate>20150601</startdate><enddate>20150601</enddate><creator>Holschuh, Bradley</creator><creator>Obropta, Edward</creator><creator>Newman, Dava</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20150601</creationdate><title>Low Spring Index NiTi Coil Actuators for Use in Active Compression Garments</title><author>Holschuh, Bradley ; Obropta, Edward ; Newman, Dava</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c517t-8cc961a2644a2629141b0deb2aa09f3bc61e4ea180a1d4a3a5a414f72591556f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Active materials</topic><topic>Actuators</topic><topic>Coils</topic><topic>controllable compression garment design</topic><topic>Nickel titanium</topic><topic>nickel titanium (NiTi) coil springs</topic><topic>shape memory alloy (SMA) actuators</topic><topic>smart textiles</topic><topic>Textiles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Holschuh, Bradley</creatorcontrib><creatorcontrib>Obropta, Edward</creatorcontrib><creatorcontrib>Newman, Dava</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE/ASME transactions on mechatronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Holschuh, Bradley</au><au>Obropta, Edward</au><au>Newman, Dava</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low Spring Index NiTi Coil Actuators for Use in Active Compression Garments</atitle><jtitle>IEEE/ASME transactions on mechatronics</jtitle><stitle>TMECH</stitle><date>2015-06-01</date><risdate>2015</risdate><volume>20</volume><issue>3</issue><spage>1264</spage><epage>1277</epage><pages>1264-1277</pages><issn>1083-4435</issn><eissn>1941-014X</eissn><coden>IATEFW</coden><abstract>This paper describes the modeling, development, and testing of low spring index nickel titanium (NiTi) coil actuators designed for use in wearable compression garments, and presents a prototype tourniquet system using these actuators. NiTi coil actuators produce both large forces (>1 N) and large recoverable displacements (>100% length) that are well suited for compression garment design. Thermomechanical coil models are presented that describe temperature and force as a function of nondimensionalized coil geometry, extensional strain, and applied voltage. These models suggest that low spring index coils maximize activation force, and an analytical model is presented to predict garment counter-pressure based on actuator architecture. Several low spring index (C= 3.08) coils were manufactured, annealed, and tested to assess their detwinning and activation characteristics. Results suggest both annealing and applied stress affect activation thresholds. Actuator force increases both with extensional strain and applied voltage up to 7.24 N. A first-generation compression tourniquet system using integrated actuators with direct voltage control of applied pressure is presented, demonstrating >70% increase in applied pressure during activation. This approach enables new, dynamic garments with controllable activation and low effort donning and doffing, with applications ranging from healthcare solutions to advanced space suit design.</abstract><pub>IEEE</pub><doi>10.1109/TMECH.2014.2328519</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1083-4435 |
ispartof | IEEE/ASME transactions on mechatronics, 2015-06, Vol.20 (3), p.1264-1277 |
issn | 1083-4435 1941-014X |
language | eng |
recordid | cdi_ieee_primary_6844155 |
source | IEEE Electronic Library (IEL) |
subjects | Active materials Actuators Coils controllable compression garment design Nickel titanium nickel titanium (NiTi) coil springs shape memory alloy (SMA) actuators smart textiles Textiles |
title | Low Spring Index NiTi Coil Actuators for Use in Active Compression Garments |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T05%3A35%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low%20Spring%20Index%20NiTi%20Coil%20Actuators%20for%20Use%20in%20Active%20Compression%20Garments&rft.jtitle=IEEE/ASME%20transactions%20on%20mechatronics&rft.au=Holschuh,%20Bradley&rft.date=2015-06-01&rft.volume=20&rft.issue=3&rft.spage=1264&rft.epage=1277&rft.pages=1264-1277&rft.issn=1083-4435&rft.eissn=1941-014X&rft.coden=IATEFW&rft_id=info:doi/10.1109/TMECH.2014.2328519&rft_dat=%3Ccrossref_RIE%3E10_1109_TMECH_2014_2328519%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6844155&rfr_iscdi=true |