FSPE: Visualization of Hyperspectral Imagery Using Faithful Stochastic Proximity Embedding

Hyperspectral image visualization reduces color bands to three, but prevailing linear methods fail to address data characteristics, and nonlinear embeddings are computationally demanding. Qualitative evaluation of embedding is also lacking. We propose faithful stochastic proximity embedding (FSPE),...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE geoscience and remote sensing letters 2015-01, Vol.12 (1), p.18-22
Hauptverfasser: Najim, Safa A., Ik Soo Lim, Wittek, Peter, Jones, Mark W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 22
container_issue 1
container_start_page 18
container_title IEEE geoscience and remote sensing letters
container_volume 12
creator Najim, Safa A.
Ik Soo Lim
Wittek, Peter
Jones, Mark W.
description Hyperspectral image visualization reduces color bands to three, but prevailing linear methods fail to address data characteristics, and nonlinear embeddings are computationally demanding. Qualitative evaluation of embedding is also lacking. We propose faithful stochastic proximity embedding (FSPE), which is a scalable and nonlinear dimensionality reduction method. FSPE considers the nonlinear characteristics of spectral signatures, yet it avoids the costly computation of geodesic distances that are often required by other nonlinear methods. Furthermore, we employ a pixelwise metric that measures the quality of hyperspectral image visualization at each pixel. FSPE outperforms the state-of-art methods by at least 12% on average and up to 25% in the qualitative measure. An implementation on graphics processing units is two orders of magnitude faster than the baseline. Our method opens the path to high-fidelity and real-time analysis of hyperspectral images.
doi_str_mv 10.1109/LGRS.2014.2324631
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_6840958</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6840958</ieee_id><sourcerecordid>3407465871</sourcerecordid><originalsourceid>FETCH-LOGICAL-c441t-f51eb1ec300f970fc674e67a787c9633d12eedd504a4d18e2a3a51af4aa3d7993</originalsourceid><addsrcrecordid>eNo9kF1LwzAYhYsoOKc_QLwJeCd0Jk3SpN6NuS8YOJwb4k1I23TL6JaatGj99bZ07Oo9F885vDyed4_gACEYPS-m76tBABEZBDggIUYXXg9Ryn1IGbpsM6E-jfjntXfj3B7CgHDOet7XZLUcv4CNdpXM9Z8stTkCk4FZXSjrCpWUVuZgfpBbZWuwdvq4BROpy11W5WBVmmQnXakTsLTmVx90WYPxIVZp2nC33lUmc6fuTrfvrSfjj9HMX7xN56Phwk8IQaWfUaRipBIMYRYxmCUhIypkknGWRCHGKQpUM0ghkSRFXAUSS4pkRqTEKYsi3Peeul33o4oqFoXVB2lrYaQWr3ozFMZuxS4WnOIWfuzgwprvSrlS7E1lj81_otFFSIAR5A2FOiqxxjmrsvMogqL1LVrfovUtTr6bzkPX0UqpMx9yAiPK8T8Yq30E</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1554423108</pqid></control><display><type>article</type><title>FSPE: Visualization of Hyperspectral Imagery Using Faithful Stochastic Proximity Embedding</title><source>IEEE Electronic Library (IEL)</source><creator>Najim, Safa A. ; Ik Soo Lim ; Wittek, Peter ; Jones, Mark W.</creator><creatorcontrib>Najim, Safa A. ; Ik Soo Lim ; Wittek, Peter ; Jones, Mark W.</creatorcontrib><description>Hyperspectral image visualization reduces color bands to three, but prevailing linear methods fail to address data characteristics, and nonlinear embeddings are computationally demanding. Qualitative evaluation of embedding is also lacking. We propose faithful stochastic proximity embedding (FSPE), which is a scalable and nonlinear dimensionality reduction method. FSPE considers the nonlinear characteristics of spectral signatures, yet it avoids the costly computation of geodesic distances that are often required by other nonlinear methods. Furthermore, we employ a pixelwise metric that measures the quality of hyperspectral image visualization at each pixel. FSPE outperforms the state-of-art methods by at least 12% on average and up to 25% in the qualitative measure. An implementation on graphics processing units is two orders of magnitude faster than the baseline. Our method opens the path to high-fidelity and real-time analysis of hyperspectral images.</description><identifier>ISSN: 1545-598X</identifier><identifier>ISSN: 1558-0571</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2014.2324631</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Correlation ; Dimension reduction methods ; hyperspectral imagery sensing ; Hyperspectral imaging ; Image color analysis ; Measurement ; Methods ; Principal component analysis ; Visualization</subject><ispartof>IEEE geoscience and remote sensing letters, 2015-01, Vol.12 (1), p.18-22</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c441t-f51eb1ec300f970fc674e67a787c9633d12eedd504a4d18e2a3a51af4aa3d7993</citedby><cites>FETCH-LOGICAL-c441t-f51eb1ec300f970fc674e67a787c9633d12eedd504a4d18e2a3a51af4aa3d7993</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6840958$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,315,781,785,797,886,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6840958$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:hb:diva-8539$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Najim, Safa A.</creatorcontrib><creatorcontrib>Ik Soo Lim</creatorcontrib><creatorcontrib>Wittek, Peter</creatorcontrib><creatorcontrib>Jones, Mark W.</creatorcontrib><title>FSPE: Visualization of Hyperspectral Imagery Using Faithful Stochastic Proximity Embedding</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>Hyperspectral image visualization reduces color bands to three, but prevailing linear methods fail to address data characteristics, and nonlinear embeddings are computationally demanding. Qualitative evaluation of embedding is also lacking. We propose faithful stochastic proximity embedding (FSPE), which is a scalable and nonlinear dimensionality reduction method. FSPE considers the nonlinear characteristics of spectral signatures, yet it avoids the costly computation of geodesic distances that are often required by other nonlinear methods. Furthermore, we employ a pixelwise metric that measures the quality of hyperspectral image visualization at each pixel. FSPE outperforms the state-of-art methods by at least 12% on average and up to 25% in the qualitative measure. An implementation on graphics processing units is two orders of magnitude faster than the baseline. Our method opens the path to high-fidelity and real-time analysis of hyperspectral images.</description><subject>Correlation</subject><subject>Dimension reduction methods</subject><subject>hyperspectral imagery sensing</subject><subject>Hyperspectral imaging</subject><subject>Image color analysis</subject><subject>Measurement</subject><subject>Methods</subject><subject>Principal component analysis</subject><subject>Visualization</subject><issn>1545-598X</issn><issn>1558-0571</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF1LwzAYhYsoOKc_QLwJeCd0Jk3SpN6NuS8YOJwb4k1I23TL6JaatGj99bZ07Oo9F885vDyed4_gACEYPS-m76tBABEZBDggIUYXXg9Ryn1IGbpsM6E-jfjntXfj3B7CgHDOet7XZLUcv4CNdpXM9Z8stTkCk4FZXSjrCpWUVuZgfpBbZWuwdvq4BROpy11W5WBVmmQnXakTsLTmVx90WYPxIVZp2nC33lUmc6fuTrfvrSfjj9HMX7xN56Phwk8IQaWfUaRipBIMYRYxmCUhIypkknGWRCHGKQpUM0ghkSRFXAUSS4pkRqTEKYsi3Peeul33o4oqFoXVB2lrYaQWr3ozFMZuxS4WnOIWfuzgwprvSrlS7E1lj81_otFFSIAR5A2FOiqxxjmrsvMogqL1LVrfovUtTr6bzkPX0UqpMx9yAiPK8T8Yq30E</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Najim, Safa A.</creator><creator>Ik Soo Lim</creator><creator>Wittek, Peter</creator><creator>Jones, Mark W.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>DF9</scope></search><sort><creationdate>20150101</creationdate><title>FSPE: Visualization of Hyperspectral Imagery Using Faithful Stochastic Proximity Embedding</title><author>Najim, Safa A. ; Ik Soo Lim ; Wittek, Peter ; Jones, Mark W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c441t-f51eb1ec300f970fc674e67a787c9633d12eedd504a4d18e2a3a51af4aa3d7993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Correlation</topic><topic>Dimension reduction methods</topic><topic>hyperspectral imagery sensing</topic><topic>Hyperspectral imaging</topic><topic>Image color analysis</topic><topic>Measurement</topic><topic>Methods</topic><topic>Principal component analysis</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Najim, Safa A.</creatorcontrib><creatorcontrib>Ik Soo Lim</creatorcontrib><creatorcontrib>Wittek, Peter</creatorcontrib><creatorcontrib>Jones, Mark W.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Högskolan i Borås</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Najim, Safa A.</au><au>Ik Soo Lim</au><au>Wittek, Peter</au><au>Jones, Mark W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>FSPE: Visualization of Hyperspectral Imagery Using Faithful Stochastic Proximity Embedding</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2015-01-01</date><risdate>2015</risdate><volume>12</volume><issue>1</issue><spage>18</spage><epage>22</epage><pages>18-22</pages><issn>1545-598X</issn><issn>1558-0571</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>Hyperspectral image visualization reduces color bands to three, but prevailing linear methods fail to address data characteristics, and nonlinear embeddings are computationally demanding. Qualitative evaluation of embedding is also lacking. We propose faithful stochastic proximity embedding (FSPE), which is a scalable and nonlinear dimensionality reduction method. FSPE considers the nonlinear characteristics of spectral signatures, yet it avoids the costly computation of geodesic distances that are often required by other nonlinear methods. Furthermore, we employ a pixelwise metric that measures the quality of hyperspectral image visualization at each pixel. FSPE outperforms the state-of-art methods by at least 12% on average and up to 25% in the qualitative measure. An implementation on graphics processing units is two orders of magnitude faster than the baseline. Our method opens the path to high-fidelity and real-time analysis of hyperspectral images.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2014.2324631</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1545-598X
ispartof IEEE geoscience and remote sensing letters, 2015-01, Vol.12 (1), p.18-22
issn 1545-598X
1558-0571
1558-0571
language eng
recordid cdi_ieee_primary_6840958
source IEEE Electronic Library (IEL)
subjects Correlation
Dimension reduction methods
hyperspectral imagery sensing
Hyperspectral imaging
Image color analysis
Measurement
Methods
Principal component analysis
Visualization
title FSPE: Visualization of Hyperspectral Imagery Using Faithful Stochastic Proximity Embedding
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T09%3A31%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=FSPE:%20Visualization%20of%20Hyperspectral%20Imagery%20Using%20Faithful%20Stochastic%20Proximity%20Embedding&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Najim,%20Safa%20A.&rft.date=2015-01-01&rft.volume=12&rft.issue=1&rft.spage=18&rft.epage=22&rft.pages=18-22&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2014.2324631&rft_dat=%3Cproquest_RIE%3E3407465871%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1554423108&rft_id=info:pmid/&rft_ieee_id=6840958&rfr_iscdi=true