A Cooperative Parallel Search-Based Software Engineering Approach for Code-Smells Detection

We propose in this paper to consider code-smells detection as a distributed optimization problem. The idea is that different methods are combined in parallel during the optimization process to find a consensus regarding the detection of code-smells. To this end, we used Parallel Evolutionary algorit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on software engineering 2014-09, Vol.40 (9), p.841-861
Hauptverfasser: Kessentini, Wael, Kessentini, Marouane, Sahraoui, Houari, Bechikh, Slim, Ouni, Ali
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 861
container_issue 9
container_start_page 841
container_title IEEE transactions on software engineering
container_volume 40
creator Kessentini, Wael
Kessentini, Marouane
Sahraoui, Houari
Bechikh, Slim
Ouni, Ali
description We propose in this paper to consider code-smells detection as a distributed optimization problem. The idea is that different methods are combined in parallel during the optimization process to find a consensus regarding the detection of code-smells. To this end, we used Parallel Evolutionary algorithms (P-EA) where many evolutionary algorithms with different adaptations (fitness functions, solution representations, and change operators) are executed, in a parallel cooperative manner, to solve a common goal which is the detection of code-smells. An empirical evaluation to compare the implementation of our cooperative P-EA approach with random search, two single population-based approaches and two code-smells detection techniques that are not based on meta-heuristics search. The statistical analysis of the obtained results provides evidence to support the claim that cooperative P-EA is more efficient and effective than state of the art detection approaches based on a benchmark of nine large open source systems where more than 85 percent of precision and recall scores are obtained on a variety of eight different types of code-smells.
doi_str_mv 10.1109/TSE.2014.2331057
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_6835187</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6835187</ieee_id><sourcerecordid>3432421801</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-851575e4989c06614f7058a6f6dd5b3644fd0db9b756566203d73271b66b461d3</originalsourceid><addsrcrecordid>eNpdkM9LwzAYhoMoOKd3wUvBi5fOL02TNMc55w8YKHSePIS0_bp1dE1NOsX_3oyJB0_v5XlfXh5CLilMKAV1u8znkwRoOkkYo8DlERlRxVTMeALHZASgspjzTJ2SM-83AAGRfETep9HM2h6dGZpPjF6NM22LbZSjceU6vjMeqyi39fBlHEbzbtV0iK7pVtG075015TqqrQsbFcb5FtvWR_c4YDk0tjsnJ7VpPV785pi8PcyXs6d48fL4PJsu4pIpGOKMUy45pipTJQhB01oCz4yoRVXxgok0rSuoClVILrgQCbBKskTSQogiFbRiY3Jz2A2HPnboB71tfBm-mA7tzmsaOpABkzSg1__Qjd25LrzTlAeMBikQKDhQpbPeO6x175qtcd-agt7b1sG23tvWv7ZD5epQaRDxDxcZ4zST7AcFzXjS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1562017750</pqid></control><display><type>article</type><title>A Cooperative Parallel Search-Based Software Engineering Approach for Code-Smells Detection</title><source>IEEE Electronic Library (IEL)</source><creator>Kessentini, Wael ; Kessentini, Marouane ; Sahraoui, Houari ; Bechikh, Slim ; Ouni, Ali</creator><creatorcontrib>Kessentini, Wael ; Kessentini, Marouane ; Sahraoui, Houari ; Bechikh, Slim ; Ouni, Ali</creatorcontrib><description>We propose in this paper to consider code-smells detection as a distributed optimization problem. The idea is that different methods are combined in parallel during the optimization process to find a consensus regarding the detection of code-smells. To this end, we used Parallel Evolutionary algorithms (P-EA) where many evolutionary algorithms with different adaptations (fitness functions, solution representations, and change operators) are executed, in a parallel cooperative manner, to solve a common goal which is the detection of code-smells. An empirical evaluation to compare the implementation of our cooperative P-EA approach with random search, two single population-based approaches and two code-smells detection techniques that are not based on meta-heuristics search. The statistical analysis of the obtained results provides evidence to support the claim that cooperative P-EA is more efficient and effective than state of the art detection approaches based on a benchmark of nine large open source systems where more than 85 percent of precision and recall scores are obtained on a variety of eight different types of code-smells.</description><identifier>ISSN: 0098-5589</identifier><identifier>EISSN: 1939-3520</identifier><identifier>DOI: 10.1109/TSE.2014.2331057</identifier><identifier>CODEN: IESEDJ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Benchmarking ; Codes ; Computational modeling ; Detectors ; Evolutionary algorithms ; Evolutionary computation ; Fitness ; Genetic algorithms ; Mathematical problems ; Measurement ; Open source software ; Optimization ; Optimization algorithms ; Parallel processing ; Recall ; Representations ; Searching ; Sociology ; Software engineering ; Statistics ; Studies</subject><ispartof>IEEE transactions on software engineering, 2014-09, Vol.40 (9), p.841-861</ispartof><rights>Copyright IEEE Computer Society Sep 1, 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-851575e4989c06614f7058a6f6dd5b3644fd0db9b756566203d73271b66b461d3</citedby><cites>FETCH-LOGICAL-c390t-851575e4989c06614f7058a6f6dd5b3644fd0db9b756566203d73271b66b461d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6835187$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6835187$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kessentini, Wael</creatorcontrib><creatorcontrib>Kessentini, Marouane</creatorcontrib><creatorcontrib>Sahraoui, Houari</creatorcontrib><creatorcontrib>Bechikh, Slim</creatorcontrib><creatorcontrib>Ouni, Ali</creatorcontrib><title>A Cooperative Parallel Search-Based Software Engineering Approach for Code-Smells Detection</title><title>IEEE transactions on software engineering</title><addtitle>TSE</addtitle><description>We propose in this paper to consider code-smells detection as a distributed optimization problem. The idea is that different methods are combined in parallel during the optimization process to find a consensus regarding the detection of code-smells. To this end, we used Parallel Evolutionary algorithms (P-EA) where many evolutionary algorithms with different adaptations (fitness functions, solution representations, and change operators) are executed, in a parallel cooperative manner, to solve a common goal which is the detection of code-smells. An empirical evaluation to compare the implementation of our cooperative P-EA approach with random search, two single population-based approaches and two code-smells detection techniques that are not based on meta-heuristics search. The statistical analysis of the obtained results provides evidence to support the claim that cooperative P-EA is more efficient and effective than state of the art detection approaches based on a benchmark of nine large open source systems where more than 85 percent of precision and recall scores are obtained on a variety of eight different types of code-smells.</description><subject>Benchmarking</subject><subject>Codes</subject><subject>Computational modeling</subject><subject>Detectors</subject><subject>Evolutionary algorithms</subject><subject>Evolutionary computation</subject><subject>Fitness</subject><subject>Genetic algorithms</subject><subject>Mathematical problems</subject><subject>Measurement</subject><subject>Open source software</subject><subject>Optimization</subject><subject>Optimization algorithms</subject><subject>Parallel processing</subject><subject>Recall</subject><subject>Representations</subject><subject>Searching</subject><subject>Sociology</subject><subject>Software engineering</subject><subject>Statistics</subject><subject>Studies</subject><issn>0098-5589</issn><issn>1939-3520</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkM9LwzAYhoMoOKd3wUvBi5fOL02TNMc55w8YKHSePIS0_bp1dE1NOsX_3oyJB0_v5XlfXh5CLilMKAV1u8znkwRoOkkYo8DlERlRxVTMeALHZASgspjzTJ2SM-83AAGRfETep9HM2h6dGZpPjF6NM22LbZSjceU6vjMeqyi39fBlHEbzbtV0iK7pVtG075015TqqrQsbFcb5FtvWR_c4YDk0tjsnJ7VpPV785pi8PcyXs6d48fL4PJsu4pIpGOKMUy45pipTJQhB01oCz4yoRVXxgok0rSuoClVILrgQCbBKskTSQogiFbRiY3Jz2A2HPnboB71tfBm-mA7tzmsaOpABkzSg1__Qjd25LrzTlAeMBikQKDhQpbPeO6x175qtcd-agt7b1sG23tvWv7ZD5epQaRDxDxcZ4zST7AcFzXjS</recordid><startdate>20140901</startdate><enddate>20140901</enddate><creator>Kessentini, Wael</creator><creator>Kessentini, Marouane</creator><creator>Sahraoui, Houari</creator><creator>Bechikh, Slim</creator><creator>Ouni, Ali</creator><general>IEEE</general><general>IEEE Computer Society</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>K9.</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20140901</creationdate><title>A Cooperative Parallel Search-Based Software Engineering Approach for Code-Smells Detection</title><author>Kessentini, Wael ; Kessentini, Marouane ; Sahraoui, Houari ; Bechikh, Slim ; Ouni, Ali</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-851575e4989c06614f7058a6f6dd5b3644fd0db9b756566203d73271b66b461d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Benchmarking</topic><topic>Codes</topic><topic>Computational modeling</topic><topic>Detectors</topic><topic>Evolutionary algorithms</topic><topic>Evolutionary computation</topic><topic>Fitness</topic><topic>Genetic algorithms</topic><topic>Mathematical problems</topic><topic>Measurement</topic><topic>Open source software</topic><topic>Optimization</topic><topic>Optimization algorithms</topic><topic>Parallel processing</topic><topic>Recall</topic><topic>Representations</topic><topic>Searching</topic><topic>Sociology</topic><topic>Software engineering</topic><topic>Statistics</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kessentini, Wael</creatorcontrib><creatorcontrib>Kessentini, Marouane</creatorcontrib><creatorcontrib>Sahraoui, Houari</creatorcontrib><creatorcontrib>Bechikh, Slim</creatorcontrib><creatorcontrib>Ouni, Ali</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on software engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kessentini, Wael</au><au>Kessentini, Marouane</au><au>Sahraoui, Houari</au><au>Bechikh, Slim</au><au>Ouni, Ali</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Cooperative Parallel Search-Based Software Engineering Approach for Code-Smells Detection</atitle><jtitle>IEEE transactions on software engineering</jtitle><stitle>TSE</stitle><date>2014-09-01</date><risdate>2014</risdate><volume>40</volume><issue>9</issue><spage>841</spage><epage>861</epage><pages>841-861</pages><issn>0098-5589</issn><eissn>1939-3520</eissn><coden>IESEDJ</coden><abstract>We propose in this paper to consider code-smells detection as a distributed optimization problem. The idea is that different methods are combined in parallel during the optimization process to find a consensus regarding the detection of code-smells. To this end, we used Parallel Evolutionary algorithms (P-EA) where many evolutionary algorithms with different adaptations (fitness functions, solution representations, and change operators) are executed, in a parallel cooperative manner, to solve a common goal which is the detection of code-smells. An empirical evaluation to compare the implementation of our cooperative P-EA approach with random search, two single population-based approaches and two code-smells detection techniques that are not based on meta-heuristics search. The statistical analysis of the obtained results provides evidence to support the claim that cooperative P-EA is more efficient and effective than state of the art detection approaches based on a benchmark of nine large open source systems where more than 85 percent of precision and recall scores are obtained on a variety of eight different types of code-smells.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TSE.2014.2331057</doi><tpages>21</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0098-5589
ispartof IEEE transactions on software engineering, 2014-09, Vol.40 (9), p.841-861
issn 0098-5589
1939-3520
language eng
recordid cdi_ieee_primary_6835187
source IEEE Electronic Library (IEL)
subjects Benchmarking
Codes
Computational modeling
Detectors
Evolutionary algorithms
Evolutionary computation
Fitness
Genetic algorithms
Mathematical problems
Measurement
Open source software
Optimization
Optimization algorithms
Parallel processing
Recall
Representations
Searching
Sociology
Software engineering
Statistics
Studies
title A Cooperative Parallel Search-Based Software Engineering Approach for Code-Smells Detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T11%3A04%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Cooperative%20Parallel%20Search-Based%20Software%20Engineering%20Approach%20for%20Code-Smells%20Detection&rft.jtitle=IEEE%20transactions%20on%20software%20engineering&rft.au=Kessentini,%20Wael&rft.date=2014-09-01&rft.volume=40&rft.issue=9&rft.spage=841&rft.epage=861&rft.pages=841-861&rft.issn=0098-5589&rft.eissn=1939-3520&rft.coden=IESEDJ&rft_id=info:doi/10.1109/TSE.2014.2331057&rft_dat=%3Cproquest_RIE%3E3432421801%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1562017750&rft_id=info:pmid/&rft_ieee_id=6835187&rfr_iscdi=true