Implementation of a 6n \pm 1 Repetitive Controller Subject to Fractional Delays

Repetitive schemes represent an attractive solution for harmonic compensation, as they are easy to implement and require a reduced computational effort. Repetitive schemes involve the interconnection of delay lines usually implemented in digital form. A delay line is realized digitally by reserving...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial electronics (1982) 2015-01, Vol.62 (1), p.444-452
Hauptverfasser: Escobar, Gerardo, Hernandez-Gomez, Michael, Valdez-Fernandez, Andres A., Lopez-Sanchez, Manuel J., Catzin-Contreras, Glendy A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 452
container_issue 1
container_start_page 444
container_title IEEE transactions on industrial electronics (1982)
container_volume 62
creator Escobar, Gerardo
Hernandez-Gomez, Michael
Valdez-Fernandez, Andres A.
Lopez-Sanchez, Manuel J.
Catzin-Contreras, Glendy A.
description Repetitive schemes represent an attractive solution for harmonic compensation, as they are easy to implement and require a reduced computational effort. Repetitive schemes involve the interconnection of delay lines usually implemented in digital form. A delay line is realized digitally by reserving a given number of memory localities, where samples are allocated and released after a specific number of sampling periods (discrete delay) equivalent to the delay time. Such a discrete delay computed as the ratio between the required delay time and the sampling period must be an integer number in the best scenario. However, the discrete delay may have a fractional part due to limitations on the sampling period or the required delay time. This issue is referred in signal processing literature as fractional delay (FD). This paper presents a solution to implement repetitive schemes subject to such an FD issue. The solution consists in the introduction, on each delay line, of an additional filter aimed to compensate such an FD. In particular, this paper focuses on a repetitive scheme that is able to compensate harmonics 6n ±1. Experimental results are presented to confirm the benefits of the proposed scheme.
doi_str_mv 10.1109/TIE.2014.2331038
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_6834791</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6834791</ieee_id><sourcerecordid>1651402470</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1690-ddd73af4d89eaf253725336a365a04cb06f68bea28fa5f73dcffa9e9f7909bde3</originalsourceid><addsrcrecordid>eNpdkEFLwzAUgIMoOKd3wUvAi5fOl6ZJm6PMTQeDgc6bUNL2BTrapiapsH9vy8SDh8e7fN_j8RFyy2DBGKjH_Wa1iIEli5hzBjw7IzMmRBoplWTnZAZxmkUAibwkV94fYCQFEzOy27R9gy12QYfadtQaqqns6GffUkbfsMdQh_ob6dJ2wdmmQUffh-KAZaDB0rXT5eTphj5jo4_-mlwY3Xi8-d1z8rFe7Zev0Xb3slk-baOSSQVRVVUp1yapMoXaxIKn43CpuRQakrIAaWRWoI4zo4VJeVUaoxUqkypQRYV8Th5Od3tnvwb0IW9rX2LT6A7t4HMmBUsgTlIY0ft_6MEObnx5orjioESmRgpOVOms9w5N3ru61e6YM8inwvlYOJ8K57-FR-XupNSI-IfLjCepYvwHtPd2Xw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1639309589</pqid></control><display><type>article</type><title>Implementation of a 6n \pm 1 Repetitive Controller Subject to Fractional Delays</title><source>IEEE Electronic Library (IEL)</source><creator>Escobar, Gerardo ; Hernandez-Gomez, Michael ; Valdez-Fernandez, Andres A. ; Lopez-Sanchez, Manuel J. ; Catzin-Contreras, Glendy A.</creator><creatorcontrib>Escobar, Gerardo ; Hernandez-Gomez, Michael ; Valdez-Fernandez, Andres A. ; Lopez-Sanchez, Manuel J. ; Catzin-Contreras, Glendy A.</creatorcontrib><description>Repetitive schemes represent an attractive solution for harmonic compensation, as they are easy to implement and require a reduced computational effort. Repetitive schemes involve the interconnection of delay lines usually implemented in digital form. A delay line is realized digitally by reserving a given number of memory localities, where samples are allocated and released after a specific number of sampling periods (discrete delay) equivalent to the delay time. Such a discrete delay computed as the ratio between the required delay time and the sampling period must be an integer number in the best scenario. However, the discrete delay may have a fractional part due to limitations on the sampling period or the required delay time. This issue is referred in signal processing literature as fractional delay (FD). This paper presents a solution to implement repetitive schemes subject to such an FD issue. The solution consists in the introduction, on each delay line, of an additional filter aimed to compensate such an FD. In particular, this paper focuses on a repetitive scheme that is able to compensate harmonics 6n ±1. Experimental results are presented to confirm the benefits of the proposed scheme.</description><identifier>ISSN: 0278-0046</identifier><identifier>EISSN: 1557-9948</identifier><identifier>DOI: 10.1109/TIE.2014.2331038</identifier><identifier>CODEN: ITIED6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Computation ; Delay ; Delay lines ; Delays ; Equivalence ; Finite impulse response filters ; Fish ; Harmonic analysis ; Harmonics ; Interpolation ; Mathematical models ; Repetitive controllers ; Sampling ; Transfer functions</subject><ispartof>IEEE transactions on industrial electronics (1982), 2015-01, Vol.62 (1), p.444-452</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1690-ddd73af4d89eaf253725336a365a04cb06f68bea28fa5f73dcffa9e9f7909bde3</citedby><cites>FETCH-LOGICAL-c1690-ddd73af4d89eaf253725336a365a04cb06f68bea28fa5f73dcffa9e9f7909bde3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6834791$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6834791$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Escobar, Gerardo</creatorcontrib><creatorcontrib>Hernandez-Gomez, Michael</creatorcontrib><creatorcontrib>Valdez-Fernandez, Andres A.</creatorcontrib><creatorcontrib>Lopez-Sanchez, Manuel J.</creatorcontrib><creatorcontrib>Catzin-Contreras, Glendy A.</creatorcontrib><title>Implementation of a 6n \pm 1 Repetitive Controller Subject to Fractional Delays</title><title>IEEE transactions on industrial electronics (1982)</title><addtitle>TIE</addtitle><description>Repetitive schemes represent an attractive solution for harmonic compensation, as they are easy to implement and require a reduced computational effort. Repetitive schemes involve the interconnection of delay lines usually implemented in digital form. A delay line is realized digitally by reserving a given number of memory localities, where samples are allocated and released after a specific number of sampling periods (discrete delay) equivalent to the delay time. Such a discrete delay computed as the ratio between the required delay time and the sampling period must be an integer number in the best scenario. However, the discrete delay may have a fractional part due to limitations on the sampling period or the required delay time. This issue is referred in signal processing literature as fractional delay (FD). This paper presents a solution to implement repetitive schemes subject to such an FD issue. The solution consists in the introduction, on each delay line, of an additional filter aimed to compensate such an FD. In particular, this paper focuses on a repetitive scheme that is able to compensate harmonics 6n ±1. Experimental results are presented to confirm the benefits of the proposed scheme.</description><subject>Computation</subject><subject>Delay</subject><subject>Delay lines</subject><subject>Delays</subject><subject>Equivalence</subject><subject>Finite impulse response filters</subject><subject>Fish</subject><subject>Harmonic analysis</subject><subject>Harmonics</subject><subject>Interpolation</subject><subject>Mathematical models</subject><subject>Repetitive controllers</subject><subject>Sampling</subject><subject>Transfer functions</subject><issn>0278-0046</issn><issn>1557-9948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkEFLwzAUgIMoOKd3wUvAi5fOl6ZJm6PMTQeDgc6bUNL2BTrapiapsH9vy8SDh8e7fN_j8RFyy2DBGKjH_Wa1iIEli5hzBjw7IzMmRBoplWTnZAZxmkUAibwkV94fYCQFEzOy27R9gy12QYfadtQaqqns6GffUkbfsMdQh_ob6dJ2wdmmQUffh-KAZaDB0rXT5eTphj5jo4_-mlwY3Xi8-d1z8rFe7Zev0Xb3slk-baOSSQVRVVUp1yapMoXaxIKn43CpuRQakrIAaWRWoI4zo4VJeVUaoxUqkypQRYV8Th5Od3tnvwb0IW9rX2LT6A7t4HMmBUsgTlIY0ft_6MEObnx5orjioESmRgpOVOms9w5N3ru61e6YM8inwvlYOJ8K57-FR-XupNSI-IfLjCepYvwHtPd2Xw</recordid><startdate>201501</startdate><enddate>201501</enddate><creator>Escobar, Gerardo</creator><creator>Hernandez-Gomez, Michael</creator><creator>Valdez-Fernandez, Andres A.</creator><creator>Lopez-Sanchez, Manuel J.</creator><creator>Catzin-Contreras, Glendy A.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>201501</creationdate><title>Implementation of a 6n \pm 1 Repetitive Controller Subject to Fractional Delays</title><author>Escobar, Gerardo ; Hernandez-Gomez, Michael ; Valdez-Fernandez, Andres A. ; Lopez-Sanchez, Manuel J. ; Catzin-Contreras, Glendy A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1690-ddd73af4d89eaf253725336a365a04cb06f68bea28fa5f73dcffa9e9f7909bde3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Computation</topic><topic>Delay</topic><topic>Delay lines</topic><topic>Delays</topic><topic>Equivalence</topic><topic>Finite impulse response filters</topic><topic>Fish</topic><topic>Harmonic analysis</topic><topic>Harmonics</topic><topic>Interpolation</topic><topic>Mathematical models</topic><topic>Repetitive controllers</topic><topic>Sampling</topic><topic>Transfer functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Escobar, Gerardo</creatorcontrib><creatorcontrib>Hernandez-Gomez, Michael</creatorcontrib><creatorcontrib>Valdez-Fernandez, Andres A.</creatorcontrib><creatorcontrib>Lopez-Sanchez, Manuel J.</creatorcontrib><creatorcontrib>Catzin-Contreras, Glendy A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on industrial electronics (1982)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Escobar, Gerardo</au><au>Hernandez-Gomez, Michael</au><au>Valdez-Fernandez, Andres A.</au><au>Lopez-Sanchez, Manuel J.</au><au>Catzin-Contreras, Glendy A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Implementation of a 6n \pm 1 Repetitive Controller Subject to Fractional Delays</atitle><jtitle>IEEE transactions on industrial electronics (1982)</jtitle><stitle>TIE</stitle><date>2015-01</date><risdate>2015</risdate><volume>62</volume><issue>1</issue><spage>444</spage><epage>452</epage><pages>444-452</pages><issn>0278-0046</issn><eissn>1557-9948</eissn><coden>ITIED6</coden><abstract>Repetitive schemes represent an attractive solution for harmonic compensation, as they are easy to implement and require a reduced computational effort. Repetitive schemes involve the interconnection of delay lines usually implemented in digital form. A delay line is realized digitally by reserving a given number of memory localities, where samples are allocated and released after a specific number of sampling periods (discrete delay) equivalent to the delay time. Such a discrete delay computed as the ratio between the required delay time and the sampling period must be an integer number in the best scenario. However, the discrete delay may have a fractional part due to limitations on the sampling period or the required delay time. This issue is referred in signal processing literature as fractional delay (FD). This paper presents a solution to implement repetitive schemes subject to such an FD issue. The solution consists in the introduction, on each delay line, of an additional filter aimed to compensate such an FD. In particular, this paper focuses on a repetitive scheme that is able to compensate harmonics 6n ±1. Experimental results are presented to confirm the benefits of the proposed scheme.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIE.2014.2331038</doi><tpages>9</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0278-0046
ispartof IEEE transactions on industrial electronics (1982), 2015-01, Vol.62 (1), p.444-452
issn 0278-0046
1557-9948
language eng
recordid cdi_ieee_primary_6834791
source IEEE Electronic Library (IEL)
subjects Computation
Delay
Delay lines
Delays
Equivalence
Finite impulse response filters
Fish
Harmonic analysis
Harmonics
Interpolation
Mathematical models
Repetitive controllers
Sampling
Transfer functions
title Implementation of a 6n \pm 1 Repetitive Controller Subject to Fractional Delays
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T13%3A06%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Implementation%20of%20a%206n%20%5Cpm%201%20Repetitive%20Controller%20Subject%20to%20Fractional%20Delays&rft.jtitle=IEEE%20transactions%20on%20industrial%20electronics%20(1982)&rft.au=Escobar,%20Gerardo&rft.date=2015-01&rft.volume=62&rft.issue=1&rft.spage=444&rft.epage=452&rft.pages=444-452&rft.issn=0278-0046&rft.eissn=1557-9948&rft.coden=ITIED6&rft_id=info:doi/10.1109/TIE.2014.2331038&rft_dat=%3Cproquest_RIE%3E1651402470%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1639309589&rft_id=info:pmid/&rft_ieee_id=6834791&rfr_iscdi=true