Implementation of a 6n \pm 1 Repetitive Controller Subject to Fractional Delays
Repetitive schemes represent an attractive solution for harmonic compensation, as they are easy to implement and require a reduced computational effort. Repetitive schemes involve the interconnection of delay lines usually implemented in digital form. A delay line is realized digitally by reserving...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on industrial electronics (1982) 2015-01, Vol.62 (1), p.444-452 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 452 |
---|---|
container_issue | 1 |
container_start_page | 444 |
container_title | IEEE transactions on industrial electronics (1982) |
container_volume | 62 |
creator | Escobar, Gerardo Hernandez-Gomez, Michael Valdez-Fernandez, Andres A. Lopez-Sanchez, Manuel J. Catzin-Contreras, Glendy A. |
description | Repetitive schemes represent an attractive solution for harmonic compensation, as they are easy to implement and require a reduced computational effort. Repetitive schemes involve the interconnection of delay lines usually implemented in digital form. A delay line is realized digitally by reserving a given number of memory localities, where samples are allocated and released after a specific number of sampling periods (discrete delay) equivalent to the delay time. Such a discrete delay computed as the ratio between the required delay time and the sampling period must be an integer number in the best scenario. However, the discrete delay may have a fractional part due to limitations on the sampling period or the required delay time. This issue is referred in signal processing literature as fractional delay (FD). This paper presents a solution to implement repetitive schemes subject to such an FD issue. The solution consists in the introduction, on each delay line, of an additional filter aimed to compensate such an FD. In particular, this paper focuses on a repetitive scheme that is able to compensate harmonics 6n ±1. Experimental results are presented to confirm the benefits of the proposed scheme. |
doi_str_mv | 10.1109/TIE.2014.2331038 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_6834791</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6834791</ieee_id><sourcerecordid>1651402470</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1690-ddd73af4d89eaf253725336a365a04cb06f68bea28fa5f73dcffa9e9f7909bde3</originalsourceid><addsrcrecordid>eNpdkEFLwzAUgIMoOKd3wUvAi5fOl6ZJm6PMTQeDgc6bUNL2BTrapiapsH9vy8SDh8e7fN_j8RFyy2DBGKjH_Wa1iIEli5hzBjw7IzMmRBoplWTnZAZxmkUAibwkV94fYCQFEzOy27R9gy12QYfadtQaqqns6GffUkbfsMdQh_ob6dJ2wdmmQUffh-KAZaDB0rXT5eTphj5jo4_-mlwY3Xi8-d1z8rFe7Zev0Xb3slk-baOSSQVRVVUp1yapMoXaxIKn43CpuRQakrIAaWRWoI4zo4VJeVUaoxUqkypQRYV8Th5Od3tnvwb0IW9rX2LT6A7t4HMmBUsgTlIY0ft_6MEObnx5orjioESmRgpOVOms9w5N3ru61e6YM8inwvlYOJ8K57-FR-XupNSI-IfLjCepYvwHtPd2Xw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1639309589</pqid></control><display><type>article</type><title>Implementation of a 6n \pm 1 Repetitive Controller Subject to Fractional Delays</title><source>IEEE Electronic Library (IEL)</source><creator>Escobar, Gerardo ; Hernandez-Gomez, Michael ; Valdez-Fernandez, Andres A. ; Lopez-Sanchez, Manuel J. ; Catzin-Contreras, Glendy A.</creator><creatorcontrib>Escobar, Gerardo ; Hernandez-Gomez, Michael ; Valdez-Fernandez, Andres A. ; Lopez-Sanchez, Manuel J. ; Catzin-Contreras, Glendy A.</creatorcontrib><description>Repetitive schemes represent an attractive solution for harmonic compensation, as they are easy to implement and require a reduced computational effort. Repetitive schemes involve the interconnection of delay lines usually implemented in digital form. A delay line is realized digitally by reserving a given number of memory localities, where samples are allocated and released after a specific number of sampling periods (discrete delay) equivalent to the delay time. Such a discrete delay computed as the ratio between the required delay time and the sampling period must be an integer number in the best scenario. However, the discrete delay may have a fractional part due to limitations on the sampling period or the required delay time. This issue is referred in signal processing literature as fractional delay (FD). This paper presents a solution to implement repetitive schemes subject to such an FD issue. The solution consists in the introduction, on each delay line, of an additional filter aimed to compensate such an FD. In particular, this paper focuses on a repetitive scheme that is able to compensate harmonics 6n ±1. Experimental results are presented to confirm the benefits of the proposed scheme.</description><identifier>ISSN: 0278-0046</identifier><identifier>EISSN: 1557-9948</identifier><identifier>DOI: 10.1109/TIE.2014.2331038</identifier><identifier>CODEN: ITIED6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Computation ; Delay ; Delay lines ; Delays ; Equivalence ; Finite impulse response filters ; Fish ; Harmonic analysis ; Harmonics ; Interpolation ; Mathematical models ; Repetitive controllers ; Sampling ; Transfer functions</subject><ispartof>IEEE transactions on industrial electronics (1982), 2015-01, Vol.62 (1), p.444-452</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1690-ddd73af4d89eaf253725336a365a04cb06f68bea28fa5f73dcffa9e9f7909bde3</citedby><cites>FETCH-LOGICAL-c1690-ddd73af4d89eaf253725336a365a04cb06f68bea28fa5f73dcffa9e9f7909bde3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6834791$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6834791$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Escobar, Gerardo</creatorcontrib><creatorcontrib>Hernandez-Gomez, Michael</creatorcontrib><creatorcontrib>Valdez-Fernandez, Andres A.</creatorcontrib><creatorcontrib>Lopez-Sanchez, Manuel J.</creatorcontrib><creatorcontrib>Catzin-Contreras, Glendy A.</creatorcontrib><title>Implementation of a 6n \pm 1 Repetitive Controller Subject to Fractional Delays</title><title>IEEE transactions on industrial electronics (1982)</title><addtitle>TIE</addtitle><description>Repetitive schemes represent an attractive solution for harmonic compensation, as they are easy to implement and require a reduced computational effort. Repetitive schemes involve the interconnection of delay lines usually implemented in digital form. A delay line is realized digitally by reserving a given number of memory localities, where samples are allocated and released after a specific number of sampling periods (discrete delay) equivalent to the delay time. Such a discrete delay computed as the ratio between the required delay time and the sampling period must be an integer number in the best scenario. However, the discrete delay may have a fractional part due to limitations on the sampling period or the required delay time. This issue is referred in signal processing literature as fractional delay (FD). This paper presents a solution to implement repetitive schemes subject to such an FD issue. The solution consists in the introduction, on each delay line, of an additional filter aimed to compensate such an FD. In particular, this paper focuses on a repetitive scheme that is able to compensate harmonics 6n ±1. Experimental results are presented to confirm the benefits of the proposed scheme.</description><subject>Computation</subject><subject>Delay</subject><subject>Delay lines</subject><subject>Delays</subject><subject>Equivalence</subject><subject>Finite impulse response filters</subject><subject>Fish</subject><subject>Harmonic analysis</subject><subject>Harmonics</subject><subject>Interpolation</subject><subject>Mathematical models</subject><subject>Repetitive controllers</subject><subject>Sampling</subject><subject>Transfer functions</subject><issn>0278-0046</issn><issn>1557-9948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkEFLwzAUgIMoOKd3wUvAi5fOl6ZJm6PMTQeDgc6bUNL2BTrapiapsH9vy8SDh8e7fN_j8RFyy2DBGKjH_Wa1iIEli5hzBjw7IzMmRBoplWTnZAZxmkUAibwkV94fYCQFEzOy27R9gy12QYfadtQaqqns6GffUkbfsMdQh_ob6dJ2wdmmQUffh-KAZaDB0rXT5eTphj5jo4_-mlwY3Xi8-d1z8rFe7Zev0Xb3slk-baOSSQVRVVUp1yapMoXaxIKn43CpuRQakrIAaWRWoI4zo4VJeVUaoxUqkypQRYV8Th5Od3tnvwb0IW9rX2LT6A7t4HMmBUsgTlIY0ft_6MEObnx5orjioESmRgpOVOms9w5N3ru61e6YM8inwvlYOJ8K57-FR-XupNSI-IfLjCepYvwHtPd2Xw</recordid><startdate>201501</startdate><enddate>201501</enddate><creator>Escobar, Gerardo</creator><creator>Hernandez-Gomez, Michael</creator><creator>Valdez-Fernandez, Andres A.</creator><creator>Lopez-Sanchez, Manuel J.</creator><creator>Catzin-Contreras, Glendy A.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>201501</creationdate><title>Implementation of a 6n \pm 1 Repetitive Controller Subject to Fractional Delays</title><author>Escobar, Gerardo ; Hernandez-Gomez, Michael ; Valdez-Fernandez, Andres A. ; Lopez-Sanchez, Manuel J. ; Catzin-Contreras, Glendy A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1690-ddd73af4d89eaf253725336a365a04cb06f68bea28fa5f73dcffa9e9f7909bde3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Computation</topic><topic>Delay</topic><topic>Delay lines</topic><topic>Delays</topic><topic>Equivalence</topic><topic>Finite impulse response filters</topic><topic>Fish</topic><topic>Harmonic analysis</topic><topic>Harmonics</topic><topic>Interpolation</topic><topic>Mathematical models</topic><topic>Repetitive controllers</topic><topic>Sampling</topic><topic>Transfer functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Escobar, Gerardo</creatorcontrib><creatorcontrib>Hernandez-Gomez, Michael</creatorcontrib><creatorcontrib>Valdez-Fernandez, Andres A.</creatorcontrib><creatorcontrib>Lopez-Sanchez, Manuel J.</creatorcontrib><creatorcontrib>Catzin-Contreras, Glendy A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on industrial electronics (1982)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Escobar, Gerardo</au><au>Hernandez-Gomez, Michael</au><au>Valdez-Fernandez, Andres A.</au><au>Lopez-Sanchez, Manuel J.</au><au>Catzin-Contreras, Glendy A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Implementation of a 6n \pm 1 Repetitive Controller Subject to Fractional Delays</atitle><jtitle>IEEE transactions on industrial electronics (1982)</jtitle><stitle>TIE</stitle><date>2015-01</date><risdate>2015</risdate><volume>62</volume><issue>1</issue><spage>444</spage><epage>452</epage><pages>444-452</pages><issn>0278-0046</issn><eissn>1557-9948</eissn><coden>ITIED6</coden><abstract>Repetitive schemes represent an attractive solution for harmonic compensation, as they are easy to implement and require a reduced computational effort. Repetitive schemes involve the interconnection of delay lines usually implemented in digital form. A delay line is realized digitally by reserving a given number of memory localities, where samples are allocated and released after a specific number of sampling periods (discrete delay) equivalent to the delay time. Such a discrete delay computed as the ratio between the required delay time and the sampling period must be an integer number in the best scenario. However, the discrete delay may have a fractional part due to limitations on the sampling period or the required delay time. This issue is referred in signal processing literature as fractional delay (FD). This paper presents a solution to implement repetitive schemes subject to such an FD issue. The solution consists in the introduction, on each delay line, of an additional filter aimed to compensate such an FD. In particular, this paper focuses on a repetitive scheme that is able to compensate harmonics 6n ±1. Experimental results are presented to confirm the benefits of the proposed scheme.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIE.2014.2331038</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0278-0046 |
ispartof | IEEE transactions on industrial electronics (1982), 2015-01, Vol.62 (1), p.444-452 |
issn | 0278-0046 1557-9948 |
language | eng |
recordid | cdi_ieee_primary_6834791 |
source | IEEE Electronic Library (IEL) |
subjects | Computation Delay Delay lines Delays Equivalence Finite impulse response filters Fish Harmonic analysis Harmonics Interpolation Mathematical models Repetitive controllers Sampling Transfer functions |
title | Implementation of a 6n \pm 1 Repetitive Controller Subject to Fractional Delays |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T13%3A06%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Implementation%20of%20a%206n%20%5Cpm%201%20Repetitive%20Controller%20Subject%20to%20Fractional%20Delays&rft.jtitle=IEEE%20transactions%20on%20industrial%20electronics%20(1982)&rft.au=Escobar,%20Gerardo&rft.date=2015-01&rft.volume=62&rft.issue=1&rft.spage=444&rft.epage=452&rft.pages=444-452&rft.issn=0278-0046&rft.eissn=1557-9948&rft.coden=ITIED6&rft_id=info:doi/10.1109/TIE.2014.2331038&rft_dat=%3Cproquest_RIE%3E1651402470%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1639309589&rft_id=info:pmid/&rft_ieee_id=6834791&rfr_iscdi=true |