Multilevel Fast Multipole Method for Higher Order Discretizations
The multi-level fast multipole method (MLFMM) for a higher order (HO) discretization is demonstrated on high-frequency (HF) problems, illustrating for the first time how an efficient MLFMM for HO can be achieved even for very large groups. Applying several novel ideas, beneficial to both lower order...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on antennas and propagation 2014-09, Vol.62 (9), p.4695-4705 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4705 |
---|---|
container_issue | 9 |
container_start_page | 4695 |
container_title | IEEE transactions on antennas and propagation |
container_volume | 62 |
creator | Borries, Oscar Meincke, Peter Jorgensen, Erik Hansen, Per Christian |
description | The multi-level fast multipole method (MLFMM) for a higher order (HO) discretization is demonstrated on high-frequency (HF) problems, illustrating for the first time how an efficient MLFMM for HO can be achieved even for very large groups. Applying several novel ideas, beneficial to both lower order and higher order discretizations, results from a low-memory, high-speed MLFMM implementation of a HO hierarchical discretization are shown. These results challenge the general view that the benefits of HO and HF-MLFMM cannot be combined. |
doi_str_mv | 10.1109/TAP.2014.2330582 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_6834770</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6834770</ieee_id><sourcerecordid>3423990291</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-cb95352f4dd23b1e0073508ac7eb9a31b1ad5349af883e1cd4c33b8c4feb12163</originalsourceid><addsrcrecordid>eNpdkEFLw0AQhRdRsFbvgpeAFy-pOzu7yeZYqrVCSz1U8LZskolNSbt1NxX015va4sHLDA--93g8xq6BDwB4dr8YvgwEBzkQiFxpccJ6oJSOhRBwynqcg44zkbyds4sQVp2UWsoeG852TVs39ElNNLahjX711jUUzahdujKqnI8m9fuSfDT3ZXcf6lB4autv29ZuEy7ZWWWbQFfH32ev48fFaBJP50_Po-E0LlDINi7yTKESlSxLgTkQ5ykqrm2RUp5ZhBxsqVBmttIaCYpSFoi5LmRFOQhIsM_uDrlb7z52FFqz7opQ09gNuV0wkKSgtOSZ6NDbf-jK7fyma2dAJRxFmuA-kB-owrsQPFVm6-u19V8GuNlvarpNzX5Tc9y0s9wcLDUR_eGJRpmmHH8A62Vxew</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1560327636</pqid></control><display><type>article</type><title>Multilevel Fast Multipole Method for Higher Order Discretizations</title><source>IEEE Electronic Library (IEL)</source><creator>Borries, Oscar ; Meincke, Peter ; Jorgensen, Erik ; Hansen, Per Christian</creator><creatorcontrib>Borries, Oscar ; Meincke, Peter ; Jorgensen, Erik ; Hansen, Per Christian</creatorcontrib><description>The multi-level fast multipole method (MLFMM) for a higher order (HO) discretization is demonstrated on high-frequency (HF) problems, illustrating for the first time how an efficient MLFMM for HO can be achieved even for very large groups. Applying several novel ideas, beneficial to both lower order and higher order discretizations, results from a low-memory, high-speed MLFMM implementation of a HO hierarchical discretization are shown. These results challenge the general view that the benefits of HO and HF-MLFMM cannot be combined.</description><identifier>ISSN: 0018-926X</identifier><identifier>EISSN: 1558-2221</identifier><identifier>DOI: 10.1109/TAP.2014.2330582</identifier><identifier>CODEN: IETPAK</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accuracy ; Antennas ; Discretization ; Fast multipole method ; Hafnium ; High speed ; higher order basis functions ; Integral equations ; Interpolation ; Memory management ; Multilevel ; Multipoles ; Octrees ; Polynomials ; Vectors</subject><ispartof>IEEE transactions on antennas and propagation, 2014-09, Vol.62 (9), p.4695-4705</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Sep 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c324t-cb95352f4dd23b1e0073508ac7eb9a31b1ad5349af883e1cd4c33b8c4feb12163</citedby><cites>FETCH-LOGICAL-c324t-cb95352f4dd23b1e0073508ac7eb9a31b1ad5349af883e1cd4c33b8c4feb12163</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6834770$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27911,27912,54745</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6834770$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Borries, Oscar</creatorcontrib><creatorcontrib>Meincke, Peter</creatorcontrib><creatorcontrib>Jorgensen, Erik</creatorcontrib><creatorcontrib>Hansen, Per Christian</creatorcontrib><title>Multilevel Fast Multipole Method for Higher Order Discretizations</title><title>IEEE transactions on antennas and propagation</title><addtitle>TAP</addtitle><description>The multi-level fast multipole method (MLFMM) for a higher order (HO) discretization is demonstrated on high-frequency (HF) problems, illustrating for the first time how an efficient MLFMM for HO can be achieved even for very large groups. Applying several novel ideas, beneficial to both lower order and higher order discretizations, results from a low-memory, high-speed MLFMM implementation of a HO hierarchical discretization are shown. These results challenge the general view that the benefits of HO and HF-MLFMM cannot be combined.</description><subject>Accuracy</subject><subject>Antennas</subject><subject>Discretization</subject><subject>Fast multipole method</subject><subject>Hafnium</subject><subject>High speed</subject><subject>higher order basis functions</subject><subject>Integral equations</subject><subject>Interpolation</subject><subject>Memory management</subject><subject>Multilevel</subject><subject>Multipoles</subject><subject>Octrees</subject><subject>Polynomials</subject><subject>Vectors</subject><issn>0018-926X</issn><issn>1558-2221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkEFLw0AQhRdRsFbvgpeAFy-pOzu7yeZYqrVCSz1U8LZskolNSbt1NxX015va4sHLDA--93g8xq6BDwB4dr8YvgwEBzkQiFxpccJ6oJSOhRBwynqcg44zkbyds4sQVp2UWsoeG852TVs39ElNNLahjX711jUUzahdujKqnI8m9fuSfDT3ZXcf6lB4autv29ZuEy7ZWWWbQFfH32ev48fFaBJP50_Po-E0LlDINi7yTKESlSxLgTkQ5ykqrm2RUp5ZhBxsqVBmttIaCYpSFoi5LmRFOQhIsM_uDrlb7z52FFqz7opQ09gNuV0wkKSgtOSZ6NDbf-jK7fyma2dAJRxFmuA-kB-owrsQPFVm6-u19V8GuNlvarpNzX5Tc9y0s9wcLDUR_eGJRpmmHH8A62Vxew</recordid><startdate>201409</startdate><enddate>201409</enddate><creator>Borries, Oscar</creator><creator>Meincke, Peter</creator><creator>Jorgensen, Erik</creator><creator>Hansen, Per Christian</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>201409</creationdate><title>Multilevel Fast Multipole Method for Higher Order Discretizations</title><author>Borries, Oscar ; Meincke, Peter ; Jorgensen, Erik ; Hansen, Per Christian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-cb95352f4dd23b1e0073508ac7eb9a31b1ad5349af883e1cd4c33b8c4feb12163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Accuracy</topic><topic>Antennas</topic><topic>Discretization</topic><topic>Fast multipole method</topic><topic>Hafnium</topic><topic>High speed</topic><topic>higher order basis functions</topic><topic>Integral equations</topic><topic>Interpolation</topic><topic>Memory management</topic><topic>Multilevel</topic><topic>Multipoles</topic><topic>Octrees</topic><topic>Polynomials</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Borries, Oscar</creatorcontrib><creatorcontrib>Meincke, Peter</creatorcontrib><creatorcontrib>Jorgensen, Erik</creatorcontrib><creatorcontrib>Hansen, Per Christian</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on antennas and propagation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Borries, Oscar</au><au>Meincke, Peter</au><au>Jorgensen, Erik</au><au>Hansen, Per Christian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multilevel Fast Multipole Method for Higher Order Discretizations</atitle><jtitle>IEEE transactions on antennas and propagation</jtitle><stitle>TAP</stitle><date>2014-09</date><risdate>2014</risdate><volume>62</volume><issue>9</issue><spage>4695</spage><epage>4705</epage><pages>4695-4705</pages><issn>0018-926X</issn><eissn>1558-2221</eissn><coden>IETPAK</coden><abstract>The multi-level fast multipole method (MLFMM) for a higher order (HO) discretization is demonstrated on high-frequency (HF) problems, illustrating for the first time how an efficient MLFMM for HO can be achieved even for very large groups. Applying several novel ideas, beneficial to both lower order and higher order discretizations, results from a low-memory, high-speed MLFMM implementation of a HO hierarchical discretization are shown. These results challenge the general view that the benefits of HO and HF-MLFMM cannot be combined.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAP.2014.2330582</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-926X |
ispartof | IEEE transactions on antennas and propagation, 2014-09, Vol.62 (9), p.4695-4705 |
issn | 0018-926X 1558-2221 |
language | eng |
recordid | cdi_ieee_primary_6834770 |
source | IEEE Electronic Library (IEL) |
subjects | Accuracy Antennas Discretization Fast multipole method Hafnium High speed higher order basis functions Integral equations Interpolation Memory management Multilevel Multipoles Octrees Polynomials Vectors |
title | Multilevel Fast Multipole Method for Higher Order Discretizations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T00%3A15%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multilevel%20Fast%20Multipole%20Method%20for%20Higher%20Order%20Discretizations&rft.jtitle=IEEE%20transactions%20on%20antennas%20and%20propagation&rft.au=Borries,%20Oscar&rft.date=2014-09&rft.volume=62&rft.issue=9&rft.spage=4695&rft.epage=4705&rft.pages=4695-4705&rft.issn=0018-926X&rft.eissn=1558-2221&rft.coden=IETPAK&rft_id=info:doi/10.1109/TAP.2014.2330582&rft_dat=%3Cproquest_RIE%3E3423990291%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1560327636&rft_id=info:pmid/&rft_ieee_id=6834770&rfr_iscdi=true |