Multilevel Fast Multipole Method for Higher Order Discretizations

The multi-level fast multipole method (MLFMM) for a higher order (HO) discretization is demonstrated on high-frequency (HF) problems, illustrating for the first time how an efficient MLFMM for HO can be achieved even for very large groups. Applying several novel ideas, beneficial to both lower order...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on antennas and propagation 2014-09, Vol.62 (9), p.4695-4705
Hauptverfasser: Borries, Oscar, Meincke, Peter, Jorgensen, Erik, Hansen, Per Christian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4705
container_issue 9
container_start_page 4695
container_title IEEE transactions on antennas and propagation
container_volume 62
creator Borries, Oscar
Meincke, Peter
Jorgensen, Erik
Hansen, Per Christian
description The multi-level fast multipole method (MLFMM) for a higher order (HO) discretization is demonstrated on high-frequency (HF) problems, illustrating for the first time how an efficient MLFMM for HO can be achieved even for very large groups. Applying several novel ideas, beneficial to both lower order and higher order discretizations, results from a low-memory, high-speed MLFMM implementation of a HO hierarchical discretization are shown. These results challenge the general view that the benefits of HO and HF-MLFMM cannot be combined.
doi_str_mv 10.1109/TAP.2014.2330582
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_6834770</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6834770</ieee_id><sourcerecordid>3423990291</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-cb95352f4dd23b1e0073508ac7eb9a31b1ad5349af883e1cd4c33b8c4feb12163</originalsourceid><addsrcrecordid>eNpdkEFLw0AQhRdRsFbvgpeAFy-pOzu7yeZYqrVCSz1U8LZskolNSbt1NxX015va4sHLDA--93g8xq6BDwB4dr8YvgwEBzkQiFxpccJ6oJSOhRBwynqcg44zkbyds4sQVp2UWsoeG852TVs39ElNNLahjX711jUUzahdujKqnI8m9fuSfDT3ZXcf6lB4autv29ZuEy7ZWWWbQFfH32ev48fFaBJP50_Po-E0LlDINi7yTKESlSxLgTkQ5ykqrm2RUp5ZhBxsqVBmttIaCYpSFoi5LmRFOQhIsM_uDrlb7z52FFqz7opQ09gNuV0wkKSgtOSZ6NDbf-jK7fyma2dAJRxFmuA-kB-owrsQPFVm6-u19V8GuNlvarpNzX5Tc9y0s9wcLDUR_eGJRpmmHH8A62Vxew</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1560327636</pqid></control><display><type>article</type><title>Multilevel Fast Multipole Method for Higher Order Discretizations</title><source>IEEE Electronic Library (IEL)</source><creator>Borries, Oscar ; Meincke, Peter ; Jorgensen, Erik ; Hansen, Per Christian</creator><creatorcontrib>Borries, Oscar ; Meincke, Peter ; Jorgensen, Erik ; Hansen, Per Christian</creatorcontrib><description>The multi-level fast multipole method (MLFMM) for a higher order (HO) discretization is demonstrated on high-frequency (HF) problems, illustrating for the first time how an efficient MLFMM for HO can be achieved even for very large groups. Applying several novel ideas, beneficial to both lower order and higher order discretizations, results from a low-memory, high-speed MLFMM implementation of a HO hierarchical discretization are shown. These results challenge the general view that the benefits of HO and HF-MLFMM cannot be combined.</description><identifier>ISSN: 0018-926X</identifier><identifier>EISSN: 1558-2221</identifier><identifier>DOI: 10.1109/TAP.2014.2330582</identifier><identifier>CODEN: IETPAK</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accuracy ; Antennas ; Discretization ; Fast multipole method ; Hafnium ; High speed ; higher order basis functions ; Integral equations ; Interpolation ; Memory management ; Multilevel ; Multipoles ; Octrees ; Polynomials ; Vectors</subject><ispartof>IEEE transactions on antennas and propagation, 2014-09, Vol.62 (9), p.4695-4705</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Sep 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c324t-cb95352f4dd23b1e0073508ac7eb9a31b1ad5349af883e1cd4c33b8c4feb12163</citedby><cites>FETCH-LOGICAL-c324t-cb95352f4dd23b1e0073508ac7eb9a31b1ad5349af883e1cd4c33b8c4feb12163</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6834770$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27911,27912,54745</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6834770$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Borries, Oscar</creatorcontrib><creatorcontrib>Meincke, Peter</creatorcontrib><creatorcontrib>Jorgensen, Erik</creatorcontrib><creatorcontrib>Hansen, Per Christian</creatorcontrib><title>Multilevel Fast Multipole Method for Higher Order Discretizations</title><title>IEEE transactions on antennas and propagation</title><addtitle>TAP</addtitle><description>The multi-level fast multipole method (MLFMM) for a higher order (HO) discretization is demonstrated on high-frequency (HF) problems, illustrating for the first time how an efficient MLFMM for HO can be achieved even for very large groups. Applying several novel ideas, beneficial to both lower order and higher order discretizations, results from a low-memory, high-speed MLFMM implementation of a HO hierarchical discretization are shown. These results challenge the general view that the benefits of HO and HF-MLFMM cannot be combined.</description><subject>Accuracy</subject><subject>Antennas</subject><subject>Discretization</subject><subject>Fast multipole method</subject><subject>Hafnium</subject><subject>High speed</subject><subject>higher order basis functions</subject><subject>Integral equations</subject><subject>Interpolation</subject><subject>Memory management</subject><subject>Multilevel</subject><subject>Multipoles</subject><subject>Octrees</subject><subject>Polynomials</subject><subject>Vectors</subject><issn>0018-926X</issn><issn>1558-2221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkEFLw0AQhRdRsFbvgpeAFy-pOzu7yeZYqrVCSz1U8LZskolNSbt1NxX015va4sHLDA--93g8xq6BDwB4dr8YvgwEBzkQiFxpccJ6oJSOhRBwynqcg44zkbyds4sQVp2UWsoeG852TVs39ElNNLahjX711jUUzahdujKqnI8m9fuSfDT3ZXcf6lB4autv29ZuEy7ZWWWbQFfH32ev48fFaBJP50_Po-E0LlDINi7yTKESlSxLgTkQ5ykqrm2RUp5ZhBxsqVBmttIaCYpSFoi5LmRFOQhIsM_uDrlb7z52FFqz7opQ09gNuV0wkKSgtOSZ6NDbf-jK7fyma2dAJRxFmuA-kB-owrsQPFVm6-u19V8GuNlvarpNzX5Tc9y0s9wcLDUR_eGJRpmmHH8A62Vxew</recordid><startdate>201409</startdate><enddate>201409</enddate><creator>Borries, Oscar</creator><creator>Meincke, Peter</creator><creator>Jorgensen, Erik</creator><creator>Hansen, Per Christian</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>201409</creationdate><title>Multilevel Fast Multipole Method for Higher Order Discretizations</title><author>Borries, Oscar ; Meincke, Peter ; Jorgensen, Erik ; Hansen, Per Christian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-cb95352f4dd23b1e0073508ac7eb9a31b1ad5349af883e1cd4c33b8c4feb12163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Accuracy</topic><topic>Antennas</topic><topic>Discretization</topic><topic>Fast multipole method</topic><topic>Hafnium</topic><topic>High speed</topic><topic>higher order basis functions</topic><topic>Integral equations</topic><topic>Interpolation</topic><topic>Memory management</topic><topic>Multilevel</topic><topic>Multipoles</topic><topic>Octrees</topic><topic>Polynomials</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Borries, Oscar</creatorcontrib><creatorcontrib>Meincke, Peter</creatorcontrib><creatorcontrib>Jorgensen, Erik</creatorcontrib><creatorcontrib>Hansen, Per Christian</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on antennas and propagation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Borries, Oscar</au><au>Meincke, Peter</au><au>Jorgensen, Erik</au><au>Hansen, Per Christian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multilevel Fast Multipole Method for Higher Order Discretizations</atitle><jtitle>IEEE transactions on antennas and propagation</jtitle><stitle>TAP</stitle><date>2014-09</date><risdate>2014</risdate><volume>62</volume><issue>9</issue><spage>4695</spage><epage>4705</epage><pages>4695-4705</pages><issn>0018-926X</issn><eissn>1558-2221</eissn><coden>IETPAK</coden><abstract>The multi-level fast multipole method (MLFMM) for a higher order (HO) discretization is demonstrated on high-frequency (HF) problems, illustrating for the first time how an efficient MLFMM for HO can be achieved even for very large groups. Applying several novel ideas, beneficial to both lower order and higher order discretizations, results from a low-memory, high-speed MLFMM implementation of a HO hierarchical discretization are shown. These results challenge the general view that the benefits of HO and HF-MLFMM cannot be combined.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAP.2014.2330582</doi><tpages>11</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-926X
ispartof IEEE transactions on antennas and propagation, 2014-09, Vol.62 (9), p.4695-4705
issn 0018-926X
1558-2221
language eng
recordid cdi_ieee_primary_6834770
source IEEE Electronic Library (IEL)
subjects Accuracy
Antennas
Discretization
Fast multipole method
Hafnium
High speed
higher order basis functions
Integral equations
Interpolation
Memory management
Multilevel
Multipoles
Octrees
Polynomials
Vectors
title Multilevel Fast Multipole Method for Higher Order Discretizations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T00%3A15%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multilevel%20Fast%20Multipole%20Method%20for%20Higher%20Order%20Discretizations&rft.jtitle=IEEE%20transactions%20on%20antennas%20and%20propagation&rft.au=Borries,%20Oscar&rft.date=2014-09&rft.volume=62&rft.issue=9&rft.spage=4695&rft.epage=4705&rft.pages=4695-4705&rft.issn=0018-926X&rft.eissn=1558-2221&rft.coden=IETPAK&rft_id=info:doi/10.1109/TAP.2014.2330582&rft_dat=%3Cproquest_RIE%3E3423990291%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1560327636&rft_id=info:pmid/&rft_ieee_id=6834770&rfr_iscdi=true