Probabilistic Common Spatial Patterns for Multichannel EEG Analysis

Common spatial patterns (CSP) is a well-known spatial filtering algorithm for multichannel electroencephalogram (EEG) analysis. In this paper, we cast the CSP algorithm in a probabilistic modeling setting. Specifically, probabilistic CSP (P-CSP) is proposed as a generic EEG spatio-temporal modeling...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence 2015-03, Vol.37 (3), p.639-653
Hauptverfasser: Wu, Wei, Chen, Zhe, Gao, Xiaorong, Li, Yuanqing, Brown, Emery N., Gao, Shangkai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Common spatial patterns (CSP) is a well-known spatial filtering algorithm for multichannel electroencephalogram (EEG) analysis. In this paper, we cast the CSP algorithm in a probabilistic modeling setting. Specifically, probabilistic CSP (P-CSP) is proposed as a generic EEG spatio-temporal modeling framework that subsumes the CSP and regularized CSP algorithms. The proposed framework enables us to resolve the overfitting issue of CSP in a principled manner. We derive statistical inference algorithms that can alleviate the issue of local optima. In particular, an efficient algorithm based on eigendecomposition is developed for maximum a posteriori (MAP) estimation in the case of isotropic noise. For more general cases, a variational algorithm is developed for group-wise sparse Bayesian learning for the P-CSP model and for automatically determining the model size. The two proposed algorithms are validated on a simulated data set. Their practical efficacy is also demonstrated by successful applications to single-trial classifications of three motor imagery EEG data sets and by the spatio-temporal pattern analysis of one EEG data set recorded in a Stroop color naming task.
ISSN:0162-8828
1939-3539
2160-9292
DOI:10.1109/TPAMI.2014.2330598