Wavelet-based regularization strategies within the 3D list-mode ML-EM reconstruction process, for high resolution small animal PET data

The measurements obtained from the acquiring PET system tend to be very noisy, since randoms and scatter contamination events as well as detector efficiency are strong sources of noise. In particular, for the small animal reconstructed images, this problem becomes severe corrupting areas of interest...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Maynez, Leticia, de Jesus Ochoa Dominguez, Humberto, Vergara Villegas, Osslan Osiris, Cruz Sanchez, Vianey Guadalupe, Munoz, Jose Manuel Mejia
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8
container_issue
container_start_page 1
container_title
container_volume
creator Maynez, Leticia
de Jesus Ochoa Dominguez, Humberto
Vergara Villegas, Osslan Osiris
Cruz Sanchez, Vianey Guadalupe
Munoz, Jose Manuel Mejia
description The measurements obtained from the acquiring PET system tend to be very noisy, since randoms and scatter contamination events as well as detector efficiency are strong sources of noise. In particular, for the small animal reconstructed images, this problem becomes severe corrupting areas of interest between organs, making the identification process even more difficult. For that reason, a regularization step is of crucial importance. In this paper, performance evaluations for two different strategies to include wavelet-based regularization within the list-mode Maximum Likelihood Expectation-Maximization (MLEM) reconstruction process are established. Results are compared against the standard noise reduction PSF methods (Gaussian smoothing) used for resolution recovery. For each reconstruction model proposed, investigations on the effects of image quality were addressed. Results show that reconstruction process given by the Model 2, significantly improves the quantity accuracy of the images, especially incrementing the image contrast values in comparison with the standard noise reduction method, which tends to blur the image data. Reconstruction models were tested using list-mode measured data from the high-resolution quad-HIDAC small animal PET scanner.
doi_str_mv 10.1109/NSSMIC.2013.6829248
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6829248</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6829248</ieee_id><sourcerecordid>6829248</sourcerecordid><originalsourceid>FETCH-LOGICAL-i208t-791d87f02717a0c0210a442ced0065d5df83ee7e802889631ada9655e474df053</originalsourceid><addsrcrecordid>eNotkNFOwjAYhWuiiQR5Am76AA7_dt3aXhpEJQE1AeMlqes_VlM20haNvoCv7SJcnZvvOzk5hIwZTBgDffO0Wi3n0wkHlk9KxTUX6oyMtFRMSK2hyIU6JwMGimd5WYhLMorxAwCYlFxwNiC_b-YTPabs3US0NOD24E1wPya5rqUxBZNw6zDSL5ca19LUIM3vqHcxZbvOIl0ustmy96qu7elD9e_tQ1dhjNe07gJt3Lbpgdj5w7F0Z7ynpnV90pfZmlqTzBW5qI2PODrlkLzez9bTx2zx_DCf3i4yx0GlTGpmlayBSyYNVMAZGCF4hRagLGxha5UjSlTAldJlzow1uiwKFFLYuv9jSMbHXoeIm33oR4Tvzem6_A8oVmQk</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Wavelet-based regularization strategies within the 3D list-mode ML-EM reconstruction process, for high resolution small animal PET data</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Maynez, Leticia ; de Jesus Ochoa Dominguez, Humberto ; Vergara Villegas, Osslan Osiris ; Cruz Sanchez, Vianey Guadalupe ; Munoz, Jose Manuel Mejia</creator><creatorcontrib>Maynez, Leticia ; de Jesus Ochoa Dominguez, Humberto ; Vergara Villegas, Osslan Osiris ; Cruz Sanchez, Vianey Guadalupe ; Munoz, Jose Manuel Mejia</creatorcontrib><description>The measurements obtained from the acquiring PET system tend to be very noisy, since randoms and scatter contamination events as well as detector efficiency are strong sources of noise. In particular, for the small animal reconstructed images, this problem becomes severe corrupting areas of interest between organs, making the identification process even more difficult. For that reason, a regularization step is of crucial importance. In this paper, performance evaluations for two different strategies to include wavelet-based regularization within the list-mode Maximum Likelihood Expectation-Maximization (MLEM) reconstruction process are established. Results are compared against the standard noise reduction PSF methods (Gaussian smoothing) used for resolution recovery. For each reconstruction model proposed, investigations on the effects of image quality were addressed. Results show that reconstruction process given by the Model 2, significantly improves the quantity accuracy of the images, especially incrementing the image contrast values in comparison with the standard noise reduction method, which tends to blur the image data. Reconstruction models were tested using list-mode measured data from the high-resolution quad-HIDAC small animal PET scanner.</description><identifier>ISSN: 1082-3654</identifier><identifier>EISBN: 9781479905348</identifier><identifier>EISBN: 9781479905331</identifier><identifier>EISBN: 1479905348</identifier><identifier>EISBN: 147990533X</identifier><identifier>DOI: 10.1109/NSSMIC.2013.6829248</identifier><language>eng</language><publisher>IEEE</publisher><subject>Image reconstruction ; Noise ; Noise measurement ; Positron emission tomography ; Wavelet transforms</subject><ispartof>2013 IEEE Nuclear Science Symposium and Medical Imaging Conference (2013 NSS/MIC), 2013, p.1-8</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6829248$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6829248$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Maynez, Leticia</creatorcontrib><creatorcontrib>de Jesus Ochoa Dominguez, Humberto</creatorcontrib><creatorcontrib>Vergara Villegas, Osslan Osiris</creatorcontrib><creatorcontrib>Cruz Sanchez, Vianey Guadalupe</creatorcontrib><creatorcontrib>Munoz, Jose Manuel Mejia</creatorcontrib><title>Wavelet-based regularization strategies within the 3D list-mode ML-EM reconstruction process, for high resolution small animal PET data</title><title>2013 IEEE Nuclear Science Symposium and Medical Imaging Conference (2013 NSS/MIC)</title><addtitle>NSSMIC</addtitle><description>The measurements obtained from the acquiring PET system tend to be very noisy, since randoms and scatter contamination events as well as detector efficiency are strong sources of noise. In particular, for the small animal reconstructed images, this problem becomes severe corrupting areas of interest between organs, making the identification process even more difficult. For that reason, a regularization step is of crucial importance. In this paper, performance evaluations for two different strategies to include wavelet-based regularization within the list-mode Maximum Likelihood Expectation-Maximization (MLEM) reconstruction process are established. Results are compared against the standard noise reduction PSF methods (Gaussian smoothing) used for resolution recovery. For each reconstruction model proposed, investigations on the effects of image quality were addressed. Results show that reconstruction process given by the Model 2, significantly improves the quantity accuracy of the images, especially incrementing the image contrast values in comparison with the standard noise reduction method, which tends to blur the image data. Reconstruction models were tested using list-mode measured data from the high-resolution quad-HIDAC small animal PET scanner.</description><subject>Image reconstruction</subject><subject>Noise</subject><subject>Noise measurement</subject><subject>Positron emission tomography</subject><subject>Wavelet transforms</subject><issn>1082-3654</issn><isbn>9781479905348</isbn><isbn>9781479905331</isbn><isbn>1479905348</isbn><isbn>147990533X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotkNFOwjAYhWuiiQR5Am76AA7_dt3aXhpEJQE1AeMlqes_VlM20haNvoCv7SJcnZvvOzk5hIwZTBgDffO0Wi3n0wkHlk9KxTUX6oyMtFRMSK2hyIU6JwMGimd5WYhLMorxAwCYlFxwNiC_b-YTPabs3US0NOD24E1wPya5rqUxBZNw6zDSL5ca19LUIM3vqHcxZbvOIl0ustmy96qu7elD9e_tQ1dhjNe07gJt3Lbpgdj5w7F0Z7ynpnV90pfZmlqTzBW5qI2PODrlkLzez9bTx2zx_DCf3i4yx0GlTGpmlayBSyYNVMAZGCF4hRagLGxha5UjSlTAldJlzow1uiwKFFLYuv9jSMbHXoeIm33oR4Tvzem6_A8oVmQk</recordid><startdate>20131001</startdate><enddate>20131001</enddate><creator>Maynez, Leticia</creator><creator>de Jesus Ochoa Dominguez, Humberto</creator><creator>Vergara Villegas, Osslan Osiris</creator><creator>Cruz Sanchez, Vianey Guadalupe</creator><creator>Munoz, Jose Manuel Mejia</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20131001</creationdate><title>Wavelet-based regularization strategies within the 3D list-mode ML-EM reconstruction process, for high resolution small animal PET data</title><author>Maynez, Leticia ; de Jesus Ochoa Dominguez, Humberto ; Vergara Villegas, Osslan Osiris ; Cruz Sanchez, Vianey Guadalupe ; Munoz, Jose Manuel Mejia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i208t-791d87f02717a0c0210a442ced0065d5df83ee7e802889631ada9655e474df053</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Image reconstruction</topic><topic>Noise</topic><topic>Noise measurement</topic><topic>Positron emission tomography</topic><topic>Wavelet transforms</topic><toplevel>online_resources</toplevel><creatorcontrib>Maynez, Leticia</creatorcontrib><creatorcontrib>de Jesus Ochoa Dominguez, Humberto</creatorcontrib><creatorcontrib>Vergara Villegas, Osslan Osiris</creatorcontrib><creatorcontrib>Cruz Sanchez, Vianey Guadalupe</creatorcontrib><creatorcontrib>Munoz, Jose Manuel Mejia</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Maynez, Leticia</au><au>de Jesus Ochoa Dominguez, Humberto</au><au>Vergara Villegas, Osslan Osiris</au><au>Cruz Sanchez, Vianey Guadalupe</au><au>Munoz, Jose Manuel Mejia</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Wavelet-based regularization strategies within the 3D list-mode ML-EM reconstruction process, for high resolution small animal PET data</atitle><btitle>2013 IEEE Nuclear Science Symposium and Medical Imaging Conference (2013 NSS/MIC)</btitle><stitle>NSSMIC</stitle><date>2013-10-01</date><risdate>2013</risdate><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>1082-3654</issn><eisbn>9781479905348</eisbn><eisbn>9781479905331</eisbn><eisbn>1479905348</eisbn><eisbn>147990533X</eisbn><abstract>The measurements obtained from the acquiring PET system tend to be very noisy, since randoms and scatter contamination events as well as detector efficiency are strong sources of noise. In particular, for the small animal reconstructed images, this problem becomes severe corrupting areas of interest between organs, making the identification process even more difficult. For that reason, a regularization step is of crucial importance. In this paper, performance evaluations for two different strategies to include wavelet-based regularization within the list-mode Maximum Likelihood Expectation-Maximization (MLEM) reconstruction process are established. Results are compared against the standard noise reduction PSF methods (Gaussian smoothing) used for resolution recovery. For each reconstruction model proposed, investigations on the effects of image quality were addressed. Results show that reconstruction process given by the Model 2, significantly improves the quantity accuracy of the images, especially incrementing the image contrast values in comparison with the standard noise reduction method, which tends to blur the image data. Reconstruction models were tested using list-mode measured data from the high-resolution quad-HIDAC small animal PET scanner.</abstract><pub>IEEE</pub><doi>10.1109/NSSMIC.2013.6829248</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1082-3654
ispartof 2013 IEEE Nuclear Science Symposium and Medical Imaging Conference (2013 NSS/MIC), 2013, p.1-8
issn 1082-3654
language eng
recordid cdi_ieee_primary_6829248
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Image reconstruction
Noise
Noise measurement
Positron emission tomography
Wavelet transforms
title Wavelet-based regularization strategies within the 3D list-mode ML-EM reconstruction process, for high resolution small animal PET data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T22%3A52%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Wavelet-based%20regularization%20strategies%20within%20the%203D%20list-mode%20ML-EM%20reconstruction%20process,%20for%20high%20resolution%20small%20animal%20PET%20data&rft.btitle=2013%20IEEE%20Nuclear%20Science%20Symposium%20and%20Medical%20Imaging%20Conference%20(2013%20NSS/MIC)&rft.au=Maynez,%20Leticia&rft.date=2013-10-01&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=1082-3654&rft_id=info:doi/10.1109/NSSMIC.2013.6829248&rft_dat=%3Cieee_6IE%3E6829248%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781479905348&rft.eisbn_list=9781479905331&rft.eisbn_list=1479905348&rft.eisbn_list=147990533X&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6829248&rfr_iscdi=true