A Geostatistical Approach to Upscale Soil Moisture With Unequal Precision Observations

Upscaling ground-based moisture observations to satellite footprint-scale estimates is an important problem in remote sensing soil-moisture product validation. The reliability of validation is sensitive to the quality of input observation data and the upscaling strategy. This letter proposes a model...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE geoscience and remote sensing letters 2014-12, Vol.11 (12), p.2125-2129
Hauptverfasser: Wang, Jianghao, Ge, Yong, Song, Yongze, Li, Xin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2129
container_issue 12
container_start_page 2125
container_title IEEE geoscience and remote sensing letters
container_volume 11
creator Wang, Jianghao
Ge, Yong
Song, Yongze
Li, Xin
description Upscaling ground-based moisture observations to satellite footprint-scale estimates is an important problem in remote sensing soil-moisture product validation. The reliability of validation is sensitive to the quality of input observation data and the upscaling strategy. This letter proposes a model-based geostatistical approach to scale up soil moisture with observations of unequal precision. It incorporates unequal precision in the spatial covariance structure and uses Monte Carlo simulation in combination with a block kriging (BK) upscaling strategy. The approach is illustrated with a real-world application for upscaling soil moisture in the Heihe Watershed Allied Telemetry Experimental Research experiment. The results show that BK with unequal precision observations can consider both random ground-based measurement errors and upscaling model error to achieve more reliable estimates. We conclude that this approach is appropriate to quantify upscaling uncertainties and to investigate the error propagation process in soil-moisture upscaling.
doi_str_mv 10.1109/LGRS.2014.2321429
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_6819412</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6819412</ieee_id><sourcerecordid>3387983851</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-461283f7094eddec5f59d1af3b85c81b56a99e120ad2db380009ef9c3fd225ed3</originalsourceid><addsrcrecordid>eNo9kE9LAzEQxYMoWKsfQLwEPG_N321yLEWrUKlYq95CdneWptTNmuwKfnuztHiaYfi9NzMPoWtKJpQSfbdcvK4njFAxYZxRwfQJGlEpVUbklJ4OvZCZ1OrzHF3EuCOECaWmI_Q-wwvwsbOdi50r7R7P2jZ4W25x5_GmjWkEeO3dHj_7hPQB8IfrtnjTwHef8JcApYvON3hVRAg_ycg38RKd1XYf4epYx2jzcP82f8yWq8XTfLbMSp7zLhM5ZYrXU6IFVBWUspa6orbmhZKlooXMrdZAGbEVqwquCCEaal3yumJMQsXH6Pbgm27-7iF2Zuf70KSVJn2spaCC80TRA1UGH2OA2rTBfdnwaygxQ3xmiM8M8ZljfElzc9A4APjnc0W1oIz_AZnybFo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1549541433</pqid></control><display><type>article</type><title>A Geostatistical Approach to Upscale Soil Moisture With Unequal Precision Observations</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Jianghao ; Ge, Yong ; Song, Yongze ; Li, Xin</creator><creatorcontrib>Wang, Jianghao ; Ge, Yong ; Song, Yongze ; Li, Xin</creatorcontrib><description>Upscaling ground-based moisture observations to satellite footprint-scale estimates is an important problem in remote sensing soil-moisture product validation. The reliability of validation is sensitive to the quality of input observation data and the upscaling strategy. This letter proposes a model-based geostatistical approach to scale up soil moisture with observations of unequal precision. It incorporates unequal precision in the spatial covariance structure and uses Monte Carlo simulation in combination with a block kriging (BK) upscaling strategy. The approach is illustrated with a real-world application for upscaling soil moisture in the Heihe Watershed Allied Telemetry Experimental Research experiment. The results show that BK with unequal precision observations can consider both random ground-based measurement errors and upscaling model error to achieve more reliable estimates. We conclude that this approach is appropriate to quantify upscaling uncertainties and to investigate the error propagation process in soil-moisture upscaling.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2014.2321429</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Block kriging (BK) ; Estimation ; Heihe Watershed Allied Telemetry Experimental Research (HiWATER) ; Instruments ; Measurement errors ; Monte Carlo simulation ; Remote sensing ; remote sensing product validation ; Soil measurements ; Soil moisture ; Wireless sensor networks</subject><ispartof>IEEE geoscience and remote sensing letters, 2014-12, Vol.11 (12), p.2125-2129</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Dec 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-461283f7094eddec5f59d1af3b85c81b56a99e120ad2db380009ef9c3fd225ed3</citedby><cites>FETCH-LOGICAL-c363t-461283f7094eddec5f59d1af3b85c81b56a99e120ad2db380009ef9c3fd225ed3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6819412$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6819412$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wang, Jianghao</creatorcontrib><creatorcontrib>Ge, Yong</creatorcontrib><creatorcontrib>Song, Yongze</creatorcontrib><creatorcontrib>Li, Xin</creatorcontrib><title>A Geostatistical Approach to Upscale Soil Moisture With Unequal Precision Observations</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>Upscaling ground-based moisture observations to satellite footprint-scale estimates is an important problem in remote sensing soil-moisture product validation. The reliability of validation is sensitive to the quality of input observation data and the upscaling strategy. This letter proposes a model-based geostatistical approach to scale up soil moisture with observations of unequal precision. It incorporates unequal precision in the spatial covariance structure and uses Monte Carlo simulation in combination with a block kriging (BK) upscaling strategy. The approach is illustrated with a real-world application for upscaling soil moisture in the Heihe Watershed Allied Telemetry Experimental Research experiment. The results show that BK with unequal precision observations can consider both random ground-based measurement errors and upscaling model error to achieve more reliable estimates. We conclude that this approach is appropriate to quantify upscaling uncertainties and to investigate the error propagation process in soil-moisture upscaling.</description><subject>Block kriging (BK)</subject><subject>Estimation</subject><subject>Heihe Watershed Allied Telemetry Experimental Research (HiWATER)</subject><subject>Instruments</subject><subject>Measurement errors</subject><subject>Monte Carlo simulation</subject><subject>Remote sensing</subject><subject>remote sensing product validation</subject><subject>Soil measurements</subject><subject>Soil moisture</subject><subject>Wireless sensor networks</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE9LAzEQxYMoWKsfQLwEPG_N321yLEWrUKlYq95CdneWptTNmuwKfnuztHiaYfi9NzMPoWtKJpQSfbdcvK4njFAxYZxRwfQJGlEpVUbklJ4OvZCZ1OrzHF3EuCOECaWmI_Q-wwvwsbOdi50r7R7P2jZ4W25x5_GmjWkEeO3dHj_7hPQB8IfrtnjTwHef8JcApYvON3hVRAg_ycg38RKd1XYf4epYx2jzcP82f8yWq8XTfLbMSp7zLhM5ZYrXU6IFVBWUspa6orbmhZKlooXMrdZAGbEVqwquCCEaal3yumJMQsXH6Pbgm27-7iF2Zuf70KSVJn2spaCC80TRA1UGH2OA2rTBfdnwaygxQ3xmiM8M8ZljfElzc9A4APjnc0W1oIz_AZnybFo</recordid><startdate>20141201</startdate><enddate>20141201</enddate><creator>Wang, Jianghao</creator><creator>Ge, Yong</creator><creator>Song, Yongze</creator><creator>Li, Xin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20141201</creationdate><title>A Geostatistical Approach to Upscale Soil Moisture With Unequal Precision Observations</title><author>Wang, Jianghao ; Ge, Yong ; Song, Yongze ; Li, Xin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-461283f7094eddec5f59d1af3b85c81b56a99e120ad2db380009ef9c3fd225ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Block kriging (BK)</topic><topic>Estimation</topic><topic>Heihe Watershed Allied Telemetry Experimental Research (HiWATER)</topic><topic>Instruments</topic><topic>Measurement errors</topic><topic>Monte Carlo simulation</topic><topic>Remote sensing</topic><topic>remote sensing product validation</topic><topic>Soil measurements</topic><topic>Soil moisture</topic><topic>Wireless sensor networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Jianghao</creatorcontrib><creatorcontrib>Ge, Yong</creatorcontrib><creatorcontrib>Song, Yongze</creatorcontrib><creatorcontrib>Li, Xin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Jianghao</au><au>Ge, Yong</au><au>Song, Yongze</au><au>Li, Xin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Geostatistical Approach to Upscale Soil Moisture With Unequal Precision Observations</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2014-12-01</date><risdate>2014</risdate><volume>11</volume><issue>12</issue><spage>2125</spage><epage>2129</epage><pages>2125-2129</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>Upscaling ground-based moisture observations to satellite footprint-scale estimates is an important problem in remote sensing soil-moisture product validation. The reliability of validation is sensitive to the quality of input observation data and the upscaling strategy. This letter proposes a model-based geostatistical approach to scale up soil moisture with observations of unequal precision. It incorporates unequal precision in the spatial covariance structure and uses Monte Carlo simulation in combination with a block kriging (BK) upscaling strategy. The approach is illustrated with a real-world application for upscaling soil moisture in the Heihe Watershed Allied Telemetry Experimental Research experiment. The results show that BK with unequal precision observations can consider both random ground-based measurement errors and upscaling model error to achieve more reliable estimates. We conclude that this approach is appropriate to quantify upscaling uncertainties and to investigate the error propagation process in soil-moisture upscaling.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2014.2321429</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1545-598X
ispartof IEEE geoscience and remote sensing letters, 2014-12, Vol.11 (12), p.2125-2129
issn 1545-598X
1558-0571
language eng
recordid cdi_ieee_primary_6819412
source IEEE Electronic Library (IEL)
subjects Block kriging (BK)
Estimation
Heihe Watershed Allied Telemetry Experimental Research (HiWATER)
Instruments
Measurement errors
Monte Carlo simulation
Remote sensing
remote sensing product validation
Soil measurements
Soil moisture
Wireless sensor networks
title A Geostatistical Approach to Upscale Soil Moisture With Unequal Precision Observations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T02%3A06%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Geostatistical%20Approach%20to%20Upscale%20Soil%20Moisture%20With%20Unequal%20Precision%20Observations&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Wang,%20Jianghao&rft.date=2014-12-01&rft.volume=11&rft.issue=12&rft.spage=2125&rft.epage=2129&rft.pages=2125-2129&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2014.2321429&rft_dat=%3Cproquest_RIE%3E3387983851%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1549541433&rft_id=info:pmid/&rft_ieee_id=6819412&rfr_iscdi=true