A cognitive architecture for modular and self-reconfigurable robots
The field of reconfigurable swarms of modular robots has achieved a current status of performance that allows applications in diverse fields that are characterized by human support (e.g. exploratory and rescue tasks) or even in human-less environments. The main goal of the EC project REPLICATOR [1]...
Gespeichert in:
Hauptverfasser: | , , , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 472 |
---|---|
container_issue | |
container_start_page | 465 |
container_title | |
container_volume | |
creator | Levi, P. Meister, E. van Rossum, A. C. Krajnik, T. Vonasek, V. Stepan, P. Liu, W. Caparrelli, F. |
description | The field of reconfigurable swarms of modular robots has achieved a current status of performance that allows applications in diverse fields that are characterized by human support (e.g. exploratory and rescue tasks) or even in human-less environments. The main goal of the EC project REPLICATOR [1] is the development and deployment of a heterogeneous swarm of modular robots that are able to switch autonomously from a swarm of robots, into different organism forms, to reconfigure these forms, and finally to revert to the original swarm mode [2]. To achieve these goals three different types of robot modules have been developed and an extensive suite of embodied distributed cognition methods implemented [3]. Hereby the methodological key aspects address principles of self-organization. In order to tackle our ambitious approach a Grand Challenge has been proposed of autonomous operation of 100 robots for 100 days (100 days, 100 robots). Moreover, a framework coined the SOS-cycle (SOS: Swarm-Organism-Swarm) is developed. It controls the transitions between internal phases that enable the whole system to alternate between different modes mentioned above. This paper describes the vision of the Grand Challenge and the implementation and the results of the different phases of the SOS-cycle. |
doi_str_mv | 10.1109/SysCon.2014.6819298 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6819298</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6819298</ieee_id><sourcerecordid>6819298</sourcerecordid><originalsourceid>FETCH-LOGICAL-i253t-f411b7b202f8daca17c26fc7b61c8cd4c637144042d830e62c9abe9985004bd83</originalsourceid><addsrcrecordid>eNotj8tqwzAQRdVFoSX1F2SjH7A7Iyt6LIPpCwJZtF0HSR6lKo5VZLuQv2-gWV04Bw5cxtYIDSLYx_fz1OWxEYCyUQatsOaGVVYblNpaAUbBHaum6RsA0Cp9Efes2_KQj2Oa0y9xV8JXminMSyEec-Gn3C-DK9yNPZ9oiHWhkMeYjktxfiBess_z9MBuoxsmqq67Yp_PTx_da73bv7x1212dxKad6ygRvfYCRDS9Cw51ECoG7RUGE3oZVKtRSpCiNy2QEsE6T9aaDYD0F7Zi6_9uIqLDT0knV86H69X2Dx5hSxs</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A cognitive architecture for modular and self-reconfigurable robots</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Levi, P. ; Meister, E. ; van Rossum, A. C. ; Krajnik, T. ; Vonasek, V. ; Stepan, P. ; Liu, W. ; Caparrelli, F.</creator><creatorcontrib>Levi, P. ; Meister, E. ; van Rossum, A. C. ; Krajnik, T. ; Vonasek, V. ; Stepan, P. ; Liu, W. ; Caparrelli, F.</creatorcontrib><description>The field of reconfigurable swarms of modular robots has achieved a current status of performance that allows applications in diverse fields that are characterized by human support (e.g. exploratory and rescue tasks) or even in human-less environments. The main goal of the EC project REPLICATOR [1] is the development and deployment of a heterogeneous swarm of modular robots that are able to switch autonomously from a swarm of robots, into different organism forms, to reconfigure these forms, and finally to revert to the original swarm mode [2]. To achieve these goals three different types of robot modules have been developed and an extensive suite of embodied distributed cognition methods implemented [3]. Hereby the methodological key aspects address principles of self-organization. In order to tackle our ambitious approach a Grand Challenge has been proposed of autonomous operation of 100 robots for 100 days (100 days, 100 robots). Moreover, a framework coined the SOS-cycle (SOS: Swarm-Organism-Swarm) is developed. It controls the transitions between internal phases that enable the whole system to alternate between different modes mentioned above. This paper describes the vision of the Grand Challenge and the implementation and the results of the different phases of the SOS-cycle.</description><identifier>EISBN: 9781479920860</identifier><identifier>EISBN: 9781479920877</identifier><identifier>EISBN: 1479920878</identifier><identifier>EISBN: 147992086X</identifier><identifier>DOI: 10.1109/SysCon.2014.6819298</identifier><language>eng</language><publisher>IEEE</publisher><subject>Cameras ; Collision avoidance ; Mobile robots ; Organisms ; Robot kinematics ; Robot sensing systems</subject><ispartof>2014 IEEE International Systems Conference Proceedings, 2014, p.465-472</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6819298$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6819298$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Levi, P.</creatorcontrib><creatorcontrib>Meister, E.</creatorcontrib><creatorcontrib>van Rossum, A. C.</creatorcontrib><creatorcontrib>Krajnik, T.</creatorcontrib><creatorcontrib>Vonasek, V.</creatorcontrib><creatorcontrib>Stepan, P.</creatorcontrib><creatorcontrib>Liu, W.</creatorcontrib><creatorcontrib>Caparrelli, F.</creatorcontrib><title>A cognitive architecture for modular and self-reconfigurable robots</title><title>2014 IEEE International Systems Conference Proceedings</title><addtitle>SysCon</addtitle><description>The field of reconfigurable swarms of modular robots has achieved a current status of performance that allows applications in diverse fields that are characterized by human support (e.g. exploratory and rescue tasks) or even in human-less environments. The main goal of the EC project REPLICATOR [1] is the development and deployment of a heterogeneous swarm of modular robots that are able to switch autonomously from a swarm of robots, into different organism forms, to reconfigure these forms, and finally to revert to the original swarm mode [2]. To achieve these goals three different types of robot modules have been developed and an extensive suite of embodied distributed cognition methods implemented [3]. Hereby the methodological key aspects address principles of self-organization. In order to tackle our ambitious approach a Grand Challenge has been proposed of autonomous operation of 100 robots for 100 days (100 days, 100 robots). Moreover, a framework coined the SOS-cycle (SOS: Swarm-Organism-Swarm) is developed. It controls the transitions between internal phases that enable the whole system to alternate between different modes mentioned above. This paper describes the vision of the Grand Challenge and the implementation and the results of the different phases of the SOS-cycle.</description><subject>Cameras</subject><subject>Collision avoidance</subject><subject>Mobile robots</subject><subject>Organisms</subject><subject>Robot kinematics</subject><subject>Robot sensing systems</subject><isbn>9781479920860</isbn><isbn>9781479920877</isbn><isbn>1479920878</isbn><isbn>147992086X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2014</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj8tqwzAQRdVFoSX1F2SjH7A7Iyt6LIPpCwJZtF0HSR6lKo5VZLuQv2-gWV04Bw5cxtYIDSLYx_fz1OWxEYCyUQatsOaGVVYblNpaAUbBHaum6RsA0Cp9Efes2_KQj2Oa0y9xV8JXminMSyEec-Gn3C-DK9yNPZ9oiHWhkMeYjktxfiBess_z9MBuoxsmqq67Yp_PTx_da73bv7x1212dxKad6ygRvfYCRDS9Cw51ECoG7RUGE3oZVKtRSpCiNy2QEsE6T9aaDYD0F7Zi6_9uIqLDT0knV86H69X2Dx5hSxs</recordid><startdate>20140301</startdate><enddate>20140301</enddate><creator>Levi, P.</creator><creator>Meister, E.</creator><creator>van Rossum, A. C.</creator><creator>Krajnik, T.</creator><creator>Vonasek, V.</creator><creator>Stepan, P.</creator><creator>Liu, W.</creator><creator>Caparrelli, F.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20140301</creationdate><title>A cognitive architecture for modular and self-reconfigurable robots</title><author>Levi, P. ; Meister, E. ; van Rossum, A. C. ; Krajnik, T. ; Vonasek, V. ; Stepan, P. ; Liu, W. ; Caparrelli, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i253t-f411b7b202f8daca17c26fc7b61c8cd4c637144042d830e62c9abe9985004bd83</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Cameras</topic><topic>Collision avoidance</topic><topic>Mobile robots</topic><topic>Organisms</topic><topic>Robot kinematics</topic><topic>Robot sensing systems</topic><toplevel>online_resources</toplevel><creatorcontrib>Levi, P.</creatorcontrib><creatorcontrib>Meister, E.</creatorcontrib><creatorcontrib>van Rossum, A. C.</creatorcontrib><creatorcontrib>Krajnik, T.</creatorcontrib><creatorcontrib>Vonasek, V.</creatorcontrib><creatorcontrib>Stepan, P.</creatorcontrib><creatorcontrib>Liu, W.</creatorcontrib><creatorcontrib>Caparrelli, F.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Levi, P.</au><au>Meister, E.</au><au>van Rossum, A. C.</au><au>Krajnik, T.</au><au>Vonasek, V.</au><au>Stepan, P.</au><au>Liu, W.</au><au>Caparrelli, F.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A cognitive architecture for modular and self-reconfigurable robots</atitle><btitle>2014 IEEE International Systems Conference Proceedings</btitle><stitle>SysCon</stitle><date>2014-03-01</date><risdate>2014</risdate><spage>465</spage><epage>472</epage><pages>465-472</pages><eisbn>9781479920860</eisbn><eisbn>9781479920877</eisbn><eisbn>1479920878</eisbn><eisbn>147992086X</eisbn><abstract>The field of reconfigurable swarms of modular robots has achieved a current status of performance that allows applications in diverse fields that are characterized by human support (e.g. exploratory and rescue tasks) or even in human-less environments. The main goal of the EC project REPLICATOR [1] is the development and deployment of a heterogeneous swarm of modular robots that are able to switch autonomously from a swarm of robots, into different organism forms, to reconfigure these forms, and finally to revert to the original swarm mode [2]. To achieve these goals three different types of robot modules have been developed and an extensive suite of embodied distributed cognition methods implemented [3]. Hereby the methodological key aspects address principles of self-organization. In order to tackle our ambitious approach a Grand Challenge has been proposed of autonomous operation of 100 robots for 100 days (100 days, 100 robots). Moreover, a framework coined the SOS-cycle (SOS: Swarm-Organism-Swarm) is developed. It controls the transitions between internal phases that enable the whole system to alternate between different modes mentioned above. This paper describes the vision of the Grand Challenge and the implementation and the results of the different phases of the SOS-cycle.</abstract><pub>IEEE</pub><doi>10.1109/SysCon.2014.6819298</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISBN: 9781479920860 |
ispartof | 2014 IEEE International Systems Conference Proceedings, 2014, p.465-472 |
issn | |
language | eng |
recordid | cdi_ieee_primary_6819298 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Cameras Collision avoidance Mobile robots Organisms Robot kinematics Robot sensing systems |
title | A cognitive architecture for modular and self-reconfigurable robots |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T05%3A07%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20cognitive%20architecture%20for%20modular%20and%20self-reconfigurable%20robots&rft.btitle=2014%20IEEE%20International%20Systems%20Conference%20Proceedings&rft.au=Levi,%20P.&rft.date=2014-03-01&rft.spage=465&rft.epage=472&rft.pages=465-472&rft_id=info:doi/10.1109/SysCon.2014.6819298&rft_dat=%3Cieee_6IE%3E6819298%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781479920860&rft.eisbn_list=9781479920877&rft.eisbn_list=1479920878&rft.eisbn_list=147992086X&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6819298&rfr_iscdi=true |