A cognitive architecture for modular and self-reconfigurable robots

The field of reconfigurable swarms of modular robots has achieved a current status of performance that allows applications in diverse fields that are characterized by human support (e.g. exploratory and rescue tasks) or even in human-less environments. The main goal of the EC project REPLICATOR [1]...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Levi, P., Meister, E., van Rossum, A. C., Krajnik, T., Vonasek, V., Stepan, P., Liu, W., Caparrelli, F.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 472
container_issue
container_start_page 465
container_title
container_volume
creator Levi, P.
Meister, E.
van Rossum, A. C.
Krajnik, T.
Vonasek, V.
Stepan, P.
Liu, W.
Caparrelli, F.
description The field of reconfigurable swarms of modular robots has achieved a current status of performance that allows applications in diverse fields that are characterized by human support (e.g. exploratory and rescue tasks) or even in human-less environments. The main goal of the EC project REPLICATOR [1] is the development and deployment of a heterogeneous swarm of modular robots that are able to switch autonomously from a swarm of robots, into different organism forms, to reconfigure these forms, and finally to revert to the original swarm mode [2]. To achieve these goals three different types of robot modules have been developed and an extensive suite of embodied distributed cognition methods implemented [3]. Hereby the methodological key aspects address principles of self-organization. In order to tackle our ambitious approach a Grand Challenge has been proposed of autonomous operation of 100 robots for 100 days (100 days, 100 robots). Moreover, a framework coined the SOS-cycle (SOS: Swarm-Organism-Swarm) is developed. It controls the transitions between internal phases that enable the whole system to alternate between different modes mentioned above. This paper describes the vision of the Grand Challenge and the implementation and the results of the different phases of the SOS-cycle.
doi_str_mv 10.1109/SysCon.2014.6819298
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6819298</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6819298</ieee_id><sourcerecordid>6819298</sourcerecordid><originalsourceid>FETCH-LOGICAL-i253t-f411b7b202f8daca17c26fc7b61c8cd4c637144042d830e62c9abe9985004bd83</originalsourceid><addsrcrecordid>eNotj8tqwzAQRdVFoSX1F2SjH7A7Iyt6LIPpCwJZtF0HSR6lKo5VZLuQv2-gWV04Bw5cxtYIDSLYx_fz1OWxEYCyUQatsOaGVVYblNpaAUbBHaum6RsA0Cp9Efes2_KQj2Oa0y9xV8JXminMSyEec-Gn3C-DK9yNPZ9oiHWhkMeYjktxfiBess_z9MBuoxsmqq67Yp_PTx_da73bv7x1212dxKad6ygRvfYCRDS9Cw51ECoG7RUGE3oZVKtRSpCiNy2QEsE6T9aaDYD0F7Zi6_9uIqLDT0knV86H69X2Dx5hSxs</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A cognitive architecture for modular and self-reconfigurable robots</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Levi, P. ; Meister, E. ; van Rossum, A. C. ; Krajnik, T. ; Vonasek, V. ; Stepan, P. ; Liu, W. ; Caparrelli, F.</creator><creatorcontrib>Levi, P. ; Meister, E. ; van Rossum, A. C. ; Krajnik, T. ; Vonasek, V. ; Stepan, P. ; Liu, W. ; Caparrelli, F.</creatorcontrib><description>The field of reconfigurable swarms of modular robots has achieved a current status of performance that allows applications in diverse fields that are characterized by human support (e.g. exploratory and rescue tasks) or even in human-less environments. The main goal of the EC project REPLICATOR [1] is the development and deployment of a heterogeneous swarm of modular robots that are able to switch autonomously from a swarm of robots, into different organism forms, to reconfigure these forms, and finally to revert to the original swarm mode [2]. To achieve these goals three different types of robot modules have been developed and an extensive suite of embodied distributed cognition methods implemented [3]. Hereby the methodological key aspects address principles of self-organization. In order to tackle our ambitious approach a Grand Challenge has been proposed of autonomous operation of 100 robots for 100 days (100 days, 100 robots). Moreover, a framework coined the SOS-cycle (SOS: Swarm-Organism-Swarm) is developed. It controls the transitions between internal phases that enable the whole system to alternate between different modes mentioned above. This paper describes the vision of the Grand Challenge and the implementation and the results of the different phases of the SOS-cycle.</description><identifier>EISBN: 9781479920860</identifier><identifier>EISBN: 9781479920877</identifier><identifier>EISBN: 1479920878</identifier><identifier>EISBN: 147992086X</identifier><identifier>DOI: 10.1109/SysCon.2014.6819298</identifier><language>eng</language><publisher>IEEE</publisher><subject>Cameras ; Collision avoidance ; Mobile robots ; Organisms ; Robot kinematics ; Robot sensing systems</subject><ispartof>2014 IEEE International Systems Conference Proceedings, 2014, p.465-472</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6819298$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6819298$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Levi, P.</creatorcontrib><creatorcontrib>Meister, E.</creatorcontrib><creatorcontrib>van Rossum, A. C.</creatorcontrib><creatorcontrib>Krajnik, T.</creatorcontrib><creatorcontrib>Vonasek, V.</creatorcontrib><creatorcontrib>Stepan, P.</creatorcontrib><creatorcontrib>Liu, W.</creatorcontrib><creatorcontrib>Caparrelli, F.</creatorcontrib><title>A cognitive architecture for modular and self-reconfigurable robots</title><title>2014 IEEE International Systems Conference Proceedings</title><addtitle>SysCon</addtitle><description>The field of reconfigurable swarms of modular robots has achieved a current status of performance that allows applications in diverse fields that are characterized by human support (e.g. exploratory and rescue tasks) or even in human-less environments. The main goal of the EC project REPLICATOR [1] is the development and deployment of a heterogeneous swarm of modular robots that are able to switch autonomously from a swarm of robots, into different organism forms, to reconfigure these forms, and finally to revert to the original swarm mode [2]. To achieve these goals three different types of robot modules have been developed and an extensive suite of embodied distributed cognition methods implemented [3]. Hereby the methodological key aspects address principles of self-organization. In order to tackle our ambitious approach a Grand Challenge has been proposed of autonomous operation of 100 robots for 100 days (100 days, 100 robots). Moreover, a framework coined the SOS-cycle (SOS: Swarm-Organism-Swarm) is developed. It controls the transitions between internal phases that enable the whole system to alternate between different modes mentioned above. This paper describes the vision of the Grand Challenge and the implementation and the results of the different phases of the SOS-cycle.</description><subject>Cameras</subject><subject>Collision avoidance</subject><subject>Mobile robots</subject><subject>Organisms</subject><subject>Robot kinematics</subject><subject>Robot sensing systems</subject><isbn>9781479920860</isbn><isbn>9781479920877</isbn><isbn>1479920878</isbn><isbn>147992086X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2014</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj8tqwzAQRdVFoSX1F2SjH7A7Iyt6LIPpCwJZtF0HSR6lKo5VZLuQv2-gWV04Bw5cxtYIDSLYx_fz1OWxEYCyUQatsOaGVVYblNpaAUbBHaum6RsA0Cp9Efes2_KQj2Oa0y9xV8JXminMSyEec-Gn3C-DK9yNPZ9oiHWhkMeYjktxfiBess_z9MBuoxsmqq67Yp_PTx_da73bv7x1212dxKad6ygRvfYCRDS9Cw51ECoG7RUGE3oZVKtRSpCiNy2QEsE6T9aaDYD0F7Zi6_9uIqLDT0knV86H69X2Dx5hSxs</recordid><startdate>20140301</startdate><enddate>20140301</enddate><creator>Levi, P.</creator><creator>Meister, E.</creator><creator>van Rossum, A. C.</creator><creator>Krajnik, T.</creator><creator>Vonasek, V.</creator><creator>Stepan, P.</creator><creator>Liu, W.</creator><creator>Caparrelli, F.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20140301</creationdate><title>A cognitive architecture for modular and self-reconfigurable robots</title><author>Levi, P. ; Meister, E. ; van Rossum, A. C. ; Krajnik, T. ; Vonasek, V. ; Stepan, P. ; Liu, W. ; Caparrelli, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i253t-f411b7b202f8daca17c26fc7b61c8cd4c637144042d830e62c9abe9985004bd83</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Cameras</topic><topic>Collision avoidance</topic><topic>Mobile robots</topic><topic>Organisms</topic><topic>Robot kinematics</topic><topic>Robot sensing systems</topic><toplevel>online_resources</toplevel><creatorcontrib>Levi, P.</creatorcontrib><creatorcontrib>Meister, E.</creatorcontrib><creatorcontrib>van Rossum, A. C.</creatorcontrib><creatorcontrib>Krajnik, T.</creatorcontrib><creatorcontrib>Vonasek, V.</creatorcontrib><creatorcontrib>Stepan, P.</creatorcontrib><creatorcontrib>Liu, W.</creatorcontrib><creatorcontrib>Caparrelli, F.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Levi, P.</au><au>Meister, E.</au><au>van Rossum, A. C.</au><au>Krajnik, T.</au><au>Vonasek, V.</au><au>Stepan, P.</au><au>Liu, W.</au><au>Caparrelli, F.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A cognitive architecture for modular and self-reconfigurable robots</atitle><btitle>2014 IEEE International Systems Conference Proceedings</btitle><stitle>SysCon</stitle><date>2014-03-01</date><risdate>2014</risdate><spage>465</spage><epage>472</epage><pages>465-472</pages><eisbn>9781479920860</eisbn><eisbn>9781479920877</eisbn><eisbn>1479920878</eisbn><eisbn>147992086X</eisbn><abstract>The field of reconfigurable swarms of modular robots has achieved a current status of performance that allows applications in diverse fields that are characterized by human support (e.g. exploratory and rescue tasks) or even in human-less environments. The main goal of the EC project REPLICATOR [1] is the development and deployment of a heterogeneous swarm of modular robots that are able to switch autonomously from a swarm of robots, into different organism forms, to reconfigure these forms, and finally to revert to the original swarm mode [2]. To achieve these goals three different types of robot modules have been developed and an extensive suite of embodied distributed cognition methods implemented [3]. Hereby the methodological key aspects address principles of self-organization. In order to tackle our ambitious approach a Grand Challenge has been proposed of autonomous operation of 100 robots for 100 days (100 days, 100 robots). Moreover, a framework coined the SOS-cycle (SOS: Swarm-Organism-Swarm) is developed. It controls the transitions between internal phases that enable the whole system to alternate between different modes mentioned above. This paper describes the vision of the Grand Challenge and the implementation and the results of the different phases of the SOS-cycle.</abstract><pub>IEEE</pub><doi>10.1109/SysCon.2014.6819298</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier EISBN: 9781479920860
ispartof 2014 IEEE International Systems Conference Proceedings, 2014, p.465-472
issn
language eng
recordid cdi_ieee_primary_6819298
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Cameras
Collision avoidance
Mobile robots
Organisms
Robot kinematics
Robot sensing systems
title A cognitive architecture for modular and self-reconfigurable robots
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T05%3A07%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20cognitive%20architecture%20for%20modular%20and%20self-reconfigurable%20robots&rft.btitle=2014%20IEEE%20International%20Systems%20Conference%20Proceedings&rft.au=Levi,%20P.&rft.date=2014-03-01&rft.spage=465&rft.epage=472&rft.pages=465-472&rft_id=info:doi/10.1109/SysCon.2014.6819298&rft_dat=%3Cieee_6IE%3E6819298%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781479920860&rft.eisbn_list=9781479920877&rft.eisbn_list=1479920878&rft.eisbn_list=147992086X&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6819298&rfr_iscdi=true