Accelerated Learning-Based Interactive Image Segmentation Using Pairwise Constraints
Algorithms for fully automatic segmentation of images are often not sufficiently generic with suitable accuracy, and fully manual segmentation is not practical in many settings. There is a need for semiautomatic algorithms, which are capable of interacting with the user and taking into account the c...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on image processing 2014-07, Vol.23 (7), p.3057-3070 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3070 |
---|---|
container_issue | 7 |
container_start_page | 3057 |
container_title | IEEE transactions on image processing |
container_volume | 23 |
creator | Sourati, Jamshid Erdogmus, Deniz Dy, Jennifer G. Brooks, Dana H. |
description | Algorithms for fully automatic segmentation of images are often not sufficiently generic with suitable accuracy, and fully manual segmentation is not practical in many settings. There is a need for semiautomatic algorithms, which are capable of interacting with the user and taking into account the collected feedback. Typically, such methods have simply incorporated user feedback directly. Here, we employ active learning of optimal queries to guide user interaction. Our work in this paper is based on constrained spectral clustering that iteratively incorporates user feedback by propagating it through the calculated affinities. The original framework does not scale well to large data sets, and hence is not straightforward to apply to interactive image segmentation. In order to address this issue, we adopt advanced numerical methods for eigen-decomposition implemented over a subsampling scheme. Our key innovation, however, is an active learning strategy that chooses pairwise queries to present to the user in order to increase the rate of learning from the feedback. Performance evaluation is carried out on the Berkeley segmentation and Graz-02 image data sets, confirming that convergence to high accuracy levels is realizable in relatively few iterations. |
doi_str_mv | 10.1109/TIP.2014.2325783 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_6819040</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6819040</ieee_id><sourcerecordid>3377972401</sourcerecordid><originalsourceid>FETCH-LOGICAL-c507t-6929fd699df29c0dfd14e3a21bd06320cc636eb2f3c9b1846fbdc75565ebbb773</originalsourceid><addsrcrecordid>eNqNkcuLFDEQxhtR3HX1LgjSIIKXHivvzmVhHXwMDLjg7Dmk09Vjlu70mmRW_O_NMOP4OHlKwverL1X1VdVzAgtCQL_drK4XFAhfUEaFatmD6pxoThoATh-WOwjVKML1WfUkpVsopCDycXVGeSsBGDmvNlfO4YjRZuzrNdoYfNg272wqz1XIRXDZ32O9muwW6y-4nTBkm_0c6ptU0Pra-vjdJ6yXc0g5Wh9yelo9GuyY8NnxvKhuPrzfLD81688fV8urdeMEqNxITfXQS637gWoH_dATjsxS0vUgGQXnJJPY0YE53ZGWy6HrnRJCCuy6Til2UV0efO923YS9K61FO5q76Ccbf5jZevO3EvxXs53vDQddPtDF4M3RIM7fdpiymXwq-xhtwHmXDBFCK0q1_h-UF7BteVvQV_-gt_MuhrKJPSWhjMJ4oeBAuTinFHE49U3A7NM1JV2zT9cc0y0lL_-c91TwK84CvD4CNjk7DtEG59NvrlWMKbrnXhw4j4gnWbZEAwf2E7hAtjI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1546018434</pqid></control><display><type>article</type><title>Accelerated Learning-Based Interactive Image Segmentation Using Pairwise Constraints</title><source>IEEE Electronic Library (IEL)</source><creator>Sourati, Jamshid ; Erdogmus, Deniz ; Dy, Jennifer G. ; Brooks, Dana H.</creator><creatorcontrib>Sourati, Jamshid ; Erdogmus, Deniz ; Dy, Jennifer G. ; Brooks, Dana H.</creatorcontrib><description>Algorithms for fully automatic segmentation of images are often not sufficiently generic with suitable accuracy, and fully manual segmentation is not practical in many settings. There is a need for semiautomatic algorithms, which are capable of interacting with the user and taking into account the collected feedback. Typically, such methods have simply incorporated user feedback directly. Here, we employ active learning of optimal queries to guide user interaction. Our work in this paper is based on constrained spectral clustering that iteratively incorporates user feedback by propagating it through the calculated affinities. The original framework does not scale well to large data sets, and hence is not straightforward to apply to interactive image segmentation. In order to address this issue, we adopt advanced numerical methods for eigen-decomposition implemented over a subsampling scheme. Our key innovation, however, is an active learning strategy that chooses pairwise queries to present to the user in order to increase the rate of learning from the feedback. Performance evaluation is carried out on the Berkeley segmentation and Graz-02 image data sets, confirming that convergence to high accuracy levels is realizable in relatively few iterations.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2014.2325783</identifier><identifier>PMID: 24860031</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithms ; Animals ; Applied sciences ; Artificial Intelligence ; Cluster Analysis ; Clustering algorithms ; Entropy ; Exact sciences and technology ; Feedback ; Humans ; Image processing ; Image Processing, Computer-Assisted - methods ; Image segmentation ; Information, signal and communications theory ; Kernel ; Laplace equations ; Learning ; Normal Distribution ; Queries ; Segmentation ; Signal and communications theory ; Signal processing ; Signal representation. Spectral analysis ; Signal, noise ; Telecommunications and information theory ; Uncertainty ; Vectors</subject><ispartof>IEEE transactions on image processing, 2014-07, Vol.23 (7), p.3057-3070</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jul 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c507t-6929fd699df29c0dfd14e3a21bd06320cc636eb2f3c9b1846fbdc75565ebbb773</citedby><cites>FETCH-LOGICAL-c507t-6929fd699df29c0dfd14e3a21bd06320cc636eb2f3c9b1846fbdc75565ebbb773</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6819040$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,777,781,793,882,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6819040$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28733721$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24860031$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sourati, Jamshid</creatorcontrib><creatorcontrib>Erdogmus, Deniz</creatorcontrib><creatorcontrib>Dy, Jennifer G.</creatorcontrib><creatorcontrib>Brooks, Dana H.</creatorcontrib><title>Accelerated Learning-Based Interactive Image Segmentation Using Pairwise Constraints</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>Algorithms for fully automatic segmentation of images are often not sufficiently generic with suitable accuracy, and fully manual segmentation is not practical in many settings. There is a need for semiautomatic algorithms, which are capable of interacting with the user and taking into account the collected feedback. Typically, such methods have simply incorporated user feedback directly. Here, we employ active learning of optimal queries to guide user interaction. Our work in this paper is based on constrained spectral clustering that iteratively incorporates user feedback by propagating it through the calculated affinities. The original framework does not scale well to large data sets, and hence is not straightforward to apply to interactive image segmentation. In order to address this issue, we adopt advanced numerical methods for eigen-decomposition implemented over a subsampling scheme. Our key innovation, however, is an active learning strategy that chooses pairwise queries to present to the user in order to increase the rate of learning from the feedback. Performance evaluation is carried out on the Berkeley segmentation and Graz-02 image data sets, confirming that convergence to high accuracy levels is realizable in relatively few iterations.</description><subject>Algorithms</subject><subject>Animals</subject><subject>Applied sciences</subject><subject>Artificial Intelligence</subject><subject>Cluster Analysis</subject><subject>Clustering algorithms</subject><subject>Entropy</subject><subject>Exact sciences and technology</subject><subject>Feedback</subject><subject>Humans</subject><subject>Image processing</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Image segmentation</subject><subject>Information, signal and communications theory</subject><subject>Kernel</subject><subject>Laplace equations</subject><subject>Learning</subject><subject>Normal Distribution</subject><subject>Queries</subject><subject>Segmentation</subject><subject>Signal and communications theory</subject><subject>Signal processing</subject><subject>Signal representation. Spectral analysis</subject><subject>Signal, noise</subject><subject>Telecommunications and information theory</subject><subject>Uncertainty</subject><subject>Vectors</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNqNkcuLFDEQxhtR3HX1LgjSIIKXHivvzmVhHXwMDLjg7Dmk09Vjlu70mmRW_O_NMOP4OHlKwverL1X1VdVzAgtCQL_drK4XFAhfUEaFatmD6pxoThoATh-WOwjVKML1WfUkpVsopCDycXVGeSsBGDmvNlfO4YjRZuzrNdoYfNg272wqz1XIRXDZ32O9muwW6y-4nTBkm_0c6ptU0Pra-vjdJ6yXc0g5Wh9yelo9GuyY8NnxvKhuPrzfLD81688fV8urdeMEqNxITfXQS637gWoH_dATjsxS0vUgGQXnJJPY0YE53ZGWy6HrnRJCCuy6Til2UV0efO923YS9K61FO5q76Ccbf5jZevO3EvxXs53vDQddPtDF4M3RIM7fdpiymXwq-xhtwHmXDBFCK0q1_h-UF7BteVvQV_-gt_MuhrKJPSWhjMJ4oeBAuTinFHE49U3A7NM1JV2zT9cc0y0lL_-c91TwK84CvD4CNjk7DtEG59NvrlWMKbrnXhw4j4gnWbZEAwf2E7hAtjI</recordid><startdate>20140701</startdate><enddate>20140701</enddate><creator>Sourati, Jamshid</creator><creator>Erdogmus, Deniz</creator><creator>Dy, Jennifer G.</creator><creator>Brooks, Dana H.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>F28</scope><scope>FR3</scope><scope>5PM</scope></search><sort><creationdate>20140701</creationdate><title>Accelerated Learning-Based Interactive Image Segmentation Using Pairwise Constraints</title><author>Sourati, Jamshid ; Erdogmus, Deniz ; Dy, Jennifer G. ; Brooks, Dana H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c507t-6929fd699df29c0dfd14e3a21bd06320cc636eb2f3c9b1846fbdc75565ebbb773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Animals</topic><topic>Applied sciences</topic><topic>Artificial Intelligence</topic><topic>Cluster Analysis</topic><topic>Clustering algorithms</topic><topic>Entropy</topic><topic>Exact sciences and technology</topic><topic>Feedback</topic><topic>Humans</topic><topic>Image processing</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Image segmentation</topic><topic>Information, signal and communications theory</topic><topic>Kernel</topic><topic>Laplace equations</topic><topic>Learning</topic><topic>Normal Distribution</topic><topic>Queries</topic><topic>Segmentation</topic><topic>Signal and communications theory</topic><topic>Signal processing</topic><topic>Signal representation. Spectral analysis</topic><topic>Signal, noise</topic><topic>Telecommunications and information theory</topic><topic>Uncertainty</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sourati, Jamshid</creatorcontrib><creatorcontrib>Erdogmus, Deniz</creatorcontrib><creatorcontrib>Dy, Jennifer G.</creatorcontrib><creatorcontrib>Brooks, Dana H.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sourati, Jamshid</au><au>Erdogmus, Deniz</au><au>Dy, Jennifer G.</au><au>Brooks, Dana H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accelerated Learning-Based Interactive Image Segmentation Using Pairwise Constraints</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2014-07-01</date><risdate>2014</risdate><volume>23</volume><issue>7</issue><spage>3057</spage><epage>3070</epage><pages>3057-3070</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>Algorithms for fully automatic segmentation of images are often not sufficiently generic with suitable accuracy, and fully manual segmentation is not practical in many settings. There is a need for semiautomatic algorithms, which are capable of interacting with the user and taking into account the collected feedback. Typically, such methods have simply incorporated user feedback directly. Here, we employ active learning of optimal queries to guide user interaction. Our work in this paper is based on constrained spectral clustering that iteratively incorporates user feedback by propagating it through the calculated affinities. The original framework does not scale well to large data sets, and hence is not straightforward to apply to interactive image segmentation. In order to address this issue, we adopt advanced numerical methods for eigen-decomposition implemented over a subsampling scheme. Our key innovation, however, is an active learning strategy that chooses pairwise queries to present to the user in order to increase the rate of learning from the feedback. Performance evaluation is carried out on the Berkeley segmentation and Graz-02 image data sets, confirming that convergence to high accuracy levels is realizable in relatively few iterations.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>24860031</pmid><doi>10.1109/TIP.2014.2325783</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1057-7149 |
ispartof | IEEE transactions on image processing, 2014-07, Vol.23 (7), p.3057-3070 |
issn | 1057-7149 1941-0042 |
language | eng |
recordid | cdi_ieee_primary_6819040 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Animals Applied sciences Artificial Intelligence Cluster Analysis Clustering algorithms Entropy Exact sciences and technology Feedback Humans Image processing Image Processing, Computer-Assisted - methods Image segmentation Information, signal and communications theory Kernel Laplace equations Learning Normal Distribution Queries Segmentation Signal and communications theory Signal processing Signal representation. Spectral analysis Signal, noise Telecommunications and information theory Uncertainty Vectors |
title | Accelerated Learning-Based Interactive Image Segmentation Using Pairwise Constraints |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T06%3A35%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accelerated%20Learning-Based%20Interactive%20Image%20Segmentation%20Using%20Pairwise%20Constraints&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Sourati,%20Jamshid&rft.date=2014-07-01&rft.volume=23&rft.issue=7&rft.spage=3057&rft.epage=3070&rft.pages=3057-3070&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2014.2325783&rft_dat=%3Cproquest_RIE%3E3377972401%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1546018434&rft_id=info:pmid/24860031&rft_ieee_id=6819040&rfr_iscdi=true |