Accelerated Learning-Based Interactive Image Segmentation Using Pairwise Constraints

Algorithms for fully automatic segmentation of images are often not sufficiently generic with suitable accuracy, and fully manual segmentation is not practical in many settings. There is a need for semiautomatic algorithms, which are capable of interacting with the user and taking into account the c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing 2014-07, Vol.23 (7), p.3057-3070
Hauptverfasser: Sourati, Jamshid, Erdogmus, Deniz, Dy, Jennifer G., Brooks, Dana H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3070
container_issue 7
container_start_page 3057
container_title IEEE transactions on image processing
container_volume 23
creator Sourati, Jamshid
Erdogmus, Deniz
Dy, Jennifer G.
Brooks, Dana H.
description Algorithms for fully automatic segmentation of images are often not sufficiently generic with suitable accuracy, and fully manual segmentation is not practical in many settings. There is a need for semiautomatic algorithms, which are capable of interacting with the user and taking into account the collected feedback. Typically, such methods have simply incorporated user feedback directly. Here, we employ active learning of optimal queries to guide user interaction. Our work in this paper is based on constrained spectral clustering that iteratively incorporates user feedback by propagating it through the calculated affinities. The original framework does not scale well to large data sets, and hence is not straightforward to apply to interactive image segmentation. In order to address this issue, we adopt advanced numerical methods for eigen-decomposition implemented over a subsampling scheme. Our key innovation, however, is an active learning strategy that chooses pairwise queries to present to the user in order to increase the rate of learning from the feedback. Performance evaluation is carried out on the Berkeley segmentation and Graz-02 image data sets, confirming that convergence to high accuracy levels is realizable in relatively few iterations.
doi_str_mv 10.1109/TIP.2014.2325783
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_6819040</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6819040</ieee_id><sourcerecordid>3377972401</sourcerecordid><originalsourceid>FETCH-LOGICAL-c507t-6929fd699df29c0dfd14e3a21bd06320cc636eb2f3c9b1846fbdc75565ebbb773</originalsourceid><addsrcrecordid>eNqNkcuLFDEQxhtR3HX1LgjSIIKXHivvzmVhHXwMDLjg7Dmk09Vjlu70mmRW_O_NMOP4OHlKwverL1X1VdVzAgtCQL_drK4XFAhfUEaFatmD6pxoThoATh-WOwjVKML1WfUkpVsopCDycXVGeSsBGDmvNlfO4YjRZuzrNdoYfNg272wqz1XIRXDZ32O9muwW6y-4nTBkm_0c6ptU0Pra-vjdJ6yXc0g5Wh9yelo9GuyY8NnxvKhuPrzfLD81688fV8urdeMEqNxITfXQS637gWoH_dATjsxS0vUgGQXnJJPY0YE53ZGWy6HrnRJCCuy6Til2UV0efO923YS9K61FO5q76Ccbf5jZevO3EvxXs53vDQddPtDF4M3RIM7fdpiymXwq-xhtwHmXDBFCK0q1_h-UF7BteVvQV_-gt_MuhrKJPSWhjMJ4oeBAuTinFHE49U3A7NM1JV2zT9cc0y0lL_-c91TwK84CvD4CNjk7DtEG59NvrlWMKbrnXhw4j4gnWbZEAwf2E7hAtjI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1546018434</pqid></control><display><type>article</type><title>Accelerated Learning-Based Interactive Image Segmentation Using Pairwise Constraints</title><source>IEEE Electronic Library (IEL)</source><creator>Sourati, Jamshid ; Erdogmus, Deniz ; Dy, Jennifer G. ; Brooks, Dana H.</creator><creatorcontrib>Sourati, Jamshid ; Erdogmus, Deniz ; Dy, Jennifer G. ; Brooks, Dana H.</creatorcontrib><description>Algorithms for fully automatic segmentation of images are often not sufficiently generic with suitable accuracy, and fully manual segmentation is not practical in many settings. There is a need for semiautomatic algorithms, which are capable of interacting with the user and taking into account the collected feedback. Typically, such methods have simply incorporated user feedback directly. Here, we employ active learning of optimal queries to guide user interaction. Our work in this paper is based on constrained spectral clustering that iteratively incorporates user feedback by propagating it through the calculated affinities. The original framework does not scale well to large data sets, and hence is not straightforward to apply to interactive image segmentation. In order to address this issue, we adopt advanced numerical methods for eigen-decomposition implemented over a subsampling scheme. Our key innovation, however, is an active learning strategy that chooses pairwise queries to present to the user in order to increase the rate of learning from the feedback. Performance evaluation is carried out on the Berkeley segmentation and Graz-02 image data sets, confirming that convergence to high accuracy levels is realizable in relatively few iterations.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2014.2325783</identifier><identifier>PMID: 24860031</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithms ; Animals ; Applied sciences ; Artificial Intelligence ; Cluster Analysis ; Clustering algorithms ; Entropy ; Exact sciences and technology ; Feedback ; Humans ; Image processing ; Image Processing, Computer-Assisted - methods ; Image segmentation ; Information, signal and communications theory ; Kernel ; Laplace equations ; Learning ; Normal Distribution ; Queries ; Segmentation ; Signal and communications theory ; Signal processing ; Signal representation. Spectral analysis ; Signal, noise ; Telecommunications and information theory ; Uncertainty ; Vectors</subject><ispartof>IEEE transactions on image processing, 2014-07, Vol.23 (7), p.3057-3070</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jul 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c507t-6929fd699df29c0dfd14e3a21bd06320cc636eb2f3c9b1846fbdc75565ebbb773</citedby><cites>FETCH-LOGICAL-c507t-6929fd699df29c0dfd14e3a21bd06320cc636eb2f3c9b1846fbdc75565ebbb773</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6819040$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,777,781,793,882,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6819040$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28733721$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24860031$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sourati, Jamshid</creatorcontrib><creatorcontrib>Erdogmus, Deniz</creatorcontrib><creatorcontrib>Dy, Jennifer G.</creatorcontrib><creatorcontrib>Brooks, Dana H.</creatorcontrib><title>Accelerated Learning-Based Interactive Image Segmentation Using Pairwise Constraints</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>Algorithms for fully automatic segmentation of images are often not sufficiently generic with suitable accuracy, and fully manual segmentation is not practical in many settings. There is a need for semiautomatic algorithms, which are capable of interacting with the user and taking into account the collected feedback. Typically, such methods have simply incorporated user feedback directly. Here, we employ active learning of optimal queries to guide user interaction. Our work in this paper is based on constrained spectral clustering that iteratively incorporates user feedback by propagating it through the calculated affinities. The original framework does not scale well to large data sets, and hence is not straightforward to apply to interactive image segmentation. In order to address this issue, we adopt advanced numerical methods for eigen-decomposition implemented over a subsampling scheme. Our key innovation, however, is an active learning strategy that chooses pairwise queries to present to the user in order to increase the rate of learning from the feedback. Performance evaluation is carried out on the Berkeley segmentation and Graz-02 image data sets, confirming that convergence to high accuracy levels is realizable in relatively few iterations.</description><subject>Algorithms</subject><subject>Animals</subject><subject>Applied sciences</subject><subject>Artificial Intelligence</subject><subject>Cluster Analysis</subject><subject>Clustering algorithms</subject><subject>Entropy</subject><subject>Exact sciences and technology</subject><subject>Feedback</subject><subject>Humans</subject><subject>Image processing</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Image segmentation</subject><subject>Information, signal and communications theory</subject><subject>Kernel</subject><subject>Laplace equations</subject><subject>Learning</subject><subject>Normal Distribution</subject><subject>Queries</subject><subject>Segmentation</subject><subject>Signal and communications theory</subject><subject>Signal processing</subject><subject>Signal representation. Spectral analysis</subject><subject>Signal, noise</subject><subject>Telecommunications and information theory</subject><subject>Uncertainty</subject><subject>Vectors</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNqNkcuLFDEQxhtR3HX1LgjSIIKXHivvzmVhHXwMDLjg7Dmk09Vjlu70mmRW_O_NMOP4OHlKwverL1X1VdVzAgtCQL_drK4XFAhfUEaFatmD6pxoThoATh-WOwjVKML1WfUkpVsopCDycXVGeSsBGDmvNlfO4YjRZuzrNdoYfNg272wqz1XIRXDZ32O9muwW6y-4nTBkm_0c6ptU0Pra-vjdJ6yXc0g5Wh9yelo9GuyY8NnxvKhuPrzfLD81688fV8urdeMEqNxITfXQS637gWoH_dATjsxS0vUgGQXnJJPY0YE53ZGWy6HrnRJCCuy6Til2UV0efO923YS9K61FO5q76Ccbf5jZevO3EvxXs53vDQddPtDF4M3RIM7fdpiymXwq-xhtwHmXDBFCK0q1_h-UF7BteVvQV_-gt_MuhrKJPSWhjMJ4oeBAuTinFHE49U3A7NM1JV2zT9cc0y0lL_-c91TwK84CvD4CNjk7DtEG59NvrlWMKbrnXhw4j4gnWbZEAwf2E7hAtjI</recordid><startdate>20140701</startdate><enddate>20140701</enddate><creator>Sourati, Jamshid</creator><creator>Erdogmus, Deniz</creator><creator>Dy, Jennifer G.</creator><creator>Brooks, Dana H.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>F28</scope><scope>FR3</scope><scope>5PM</scope></search><sort><creationdate>20140701</creationdate><title>Accelerated Learning-Based Interactive Image Segmentation Using Pairwise Constraints</title><author>Sourati, Jamshid ; Erdogmus, Deniz ; Dy, Jennifer G. ; Brooks, Dana H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c507t-6929fd699df29c0dfd14e3a21bd06320cc636eb2f3c9b1846fbdc75565ebbb773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Animals</topic><topic>Applied sciences</topic><topic>Artificial Intelligence</topic><topic>Cluster Analysis</topic><topic>Clustering algorithms</topic><topic>Entropy</topic><topic>Exact sciences and technology</topic><topic>Feedback</topic><topic>Humans</topic><topic>Image processing</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Image segmentation</topic><topic>Information, signal and communications theory</topic><topic>Kernel</topic><topic>Laplace equations</topic><topic>Learning</topic><topic>Normal Distribution</topic><topic>Queries</topic><topic>Segmentation</topic><topic>Signal and communications theory</topic><topic>Signal processing</topic><topic>Signal representation. Spectral analysis</topic><topic>Signal, noise</topic><topic>Telecommunications and information theory</topic><topic>Uncertainty</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sourati, Jamshid</creatorcontrib><creatorcontrib>Erdogmus, Deniz</creatorcontrib><creatorcontrib>Dy, Jennifer G.</creatorcontrib><creatorcontrib>Brooks, Dana H.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sourati, Jamshid</au><au>Erdogmus, Deniz</au><au>Dy, Jennifer G.</au><au>Brooks, Dana H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accelerated Learning-Based Interactive Image Segmentation Using Pairwise Constraints</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2014-07-01</date><risdate>2014</risdate><volume>23</volume><issue>7</issue><spage>3057</spage><epage>3070</epage><pages>3057-3070</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>Algorithms for fully automatic segmentation of images are often not sufficiently generic with suitable accuracy, and fully manual segmentation is not practical in many settings. There is a need for semiautomatic algorithms, which are capable of interacting with the user and taking into account the collected feedback. Typically, such methods have simply incorporated user feedback directly. Here, we employ active learning of optimal queries to guide user interaction. Our work in this paper is based on constrained spectral clustering that iteratively incorporates user feedback by propagating it through the calculated affinities. The original framework does not scale well to large data sets, and hence is not straightforward to apply to interactive image segmentation. In order to address this issue, we adopt advanced numerical methods for eigen-decomposition implemented over a subsampling scheme. Our key innovation, however, is an active learning strategy that chooses pairwise queries to present to the user in order to increase the rate of learning from the feedback. Performance evaluation is carried out on the Berkeley segmentation and Graz-02 image data sets, confirming that convergence to high accuracy levels is realizable in relatively few iterations.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>24860031</pmid><doi>10.1109/TIP.2014.2325783</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1057-7149
ispartof IEEE transactions on image processing, 2014-07, Vol.23 (7), p.3057-3070
issn 1057-7149
1941-0042
language eng
recordid cdi_ieee_primary_6819040
source IEEE Electronic Library (IEL)
subjects Algorithms
Animals
Applied sciences
Artificial Intelligence
Cluster Analysis
Clustering algorithms
Entropy
Exact sciences and technology
Feedback
Humans
Image processing
Image Processing, Computer-Assisted - methods
Image segmentation
Information, signal and communications theory
Kernel
Laplace equations
Learning
Normal Distribution
Queries
Segmentation
Signal and communications theory
Signal processing
Signal representation. Spectral analysis
Signal, noise
Telecommunications and information theory
Uncertainty
Vectors
title Accelerated Learning-Based Interactive Image Segmentation Using Pairwise Constraints
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T06%3A35%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accelerated%20Learning-Based%20Interactive%20Image%20Segmentation%20Using%20Pairwise%20Constraints&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Sourati,%20Jamshid&rft.date=2014-07-01&rft.volume=23&rft.issue=7&rft.spage=3057&rft.epage=3070&rft.pages=3057-3070&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2014.2325783&rft_dat=%3Cproquest_RIE%3E3377972401%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1546018434&rft_id=info:pmid/24860031&rft_ieee_id=6819040&rfr_iscdi=true