Reversible discrete cosine transform
In this paper a reversible discrete cosine transform (RDCT) is presented. The N-point reversible transform is firstly presented, then the 8-point RDCT is obtained by substituting the 2 and 4-point reversible transforms for the 2 and 4-point transforms which compose the 8-point discrete cosine transf...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1772 vol.3 |
---|---|
container_issue | |
container_start_page | 1769 |
container_title | |
container_volume | 3 |
creator | Komatsu, K. Sezaki, K. |
description | In this paper a reversible discrete cosine transform (RDCT) is presented. The N-point reversible transform is firstly presented, then the 8-point RDCT is obtained by substituting the 2 and 4-point reversible transforms for the 2 and 4-point transforms which compose the 8-point discrete cosine transform (DCT), respectively. The integer input signal can be losslessly recovered, although the transform coefficients are integer numbers. If the floor functions are ignored in RDCT, the transform is exactly the same as DCT with determinant=1. RDCT is also normalized so that we can avoid the problem that dynamic range is nonuniform. A simulation on continuous-tone still images shows that the lossless and lossy compression efficiencies of RDCT are comparable to those obtained with reversible wavelet transform. |
doi_str_mv | 10.1109/ICASSP.1998.681802 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_681802</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>681802</ieee_id><sourcerecordid>681802</sourcerecordid><originalsourceid>FETCH-LOGICAL-i172t-cee15c7f2e56cc19b73ec2ee795057c6c1ae2284a64efb0a4719adb1bc57e4ff3</originalsourceid><addsrcrecordid>eNotj0tLAzEUhYMPcGjnD3Q1C7cz3pt3llJ8QUGxFdyVJL2BSB-SDIL_3oF6OPDtDt9hbIEwIIK7e1ner9dvAzpnB23RAr9gDRfG9ejg85K1zliYKqTkFq5Yg4pDr1G6G9bW-gVTpFJgVMNu3-mHSs1hT90u11hopC6eaj5SNxZ_rOlUDnN2nfy-UvvPGft4fNgsn_vV69Mks-ozGj72kQhVNImT0jGiC0ZQ5ETGKVAm6oieOLfSa0kpgJcGnd8FDFEZkimJGVucdzMRbb9LPvjyuz1fFH8nBENt</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Reversible discrete cosine transform</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Komatsu, K. ; Sezaki, K.</creator><creatorcontrib>Komatsu, K. ; Sezaki, K.</creatorcontrib><description>In this paper a reversible discrete cosine transform (RDCT) is presented. The N-point reversible transform is firstly presented, then the 8-point RDCT is obtained by substituting the 2 and 4-point reversible transforms for the 2 and 4-point transforms which compose the 8-point discrete cosine transform (DCT), respectively. The integer input signal can be losslessly recovered, although the transform coefficients are integer numbers. If the floor functions are ignored in RDCT, the transform is exactly the same as DCT with determinant=1. RDCT is also normalized so that we can avoid the problem that dynamic range is nonuniform. A simulation on continuous-tone still images shows that the lossless and lossy compression efficiencies of RDCT are comparable to those obtained with reversible wavelet transform.</description><identifier>ISSN: 1520-6149</identifier><identifier>ISBN: 9780780344280</identifier><identifier>ISBN: 0780344286</identifier><identifier>EISSN: 2379-190X</identifier><identifier>DOI: 10.1109/ICASSP.1998.681802</identifier><language>eng</language><publisher>IEEE</publisher><subject>Continuous wavelet transforms ; Discrete cosine transforms ; Discrete transforms ; Discrete wavelet transforms ; Dynamic range ; Equations ; Image coding ; Image reconstruction ; Quantization ; Wavelet transforms</subject><ispartof>Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP '98 (Cat. No.98CH36181), 1998, Vol.3, p.1769-1772 vol.3</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/681802$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,778,782,787,788,2054,4038,4039,27908,54903</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/681802$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Komatsu, K.</creatorcontrib><creatorcontrib>Sezaki, K.</creatorcontrib><title>Reversible discrete cosine transform</title><title>Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP '98 (Cat. No.98CH36181)</title><addtitle>ICASSP</addtitle><description>In this paper a reversible discrete cosine transform (RDCT) is presented. The N-point reversible transform is firstly presented, then the 8-point RDCT is obtained by substituting the 2 and 4-point reversible transforms for the 2 and 4-point transforms which compose the 8-point discrete cosine transform (DCT), respectively. The integer input signal can be losslessly recovered, although the transform coefficients are integer numbers. If the floor functions are ignored in RDCT, the transform is exactly the same as DCT with determinant=1. RDCT is also normalized so that we can avoid the problem that dynamic range is nonuniform. A simulation on continuous-tone still images shows that the lossless and lossy compression efficiencies of RDCT are comparable to those obtained with reversible wavelet transform.</description><subject>Continuous wavelet transforms</subject><subject>Discrete cosine transforms</subject><subject>Discrete transforms</subject><subject>Discrete wavelet transforms</subject><subject>Dynamic range</subject><subject>Equations</subject><subject>Image coding</subject><subject>Image reconstruction</subject><subject>Quantization</subject><subject>Wavelet transforms</subject><issn>1520-6149</issn><issn>2379-190X</issn><isbn>9780780344280</isbn><isbn>0780344286</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1998</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj0tLAzEUhYMPcGjnD3Q1C7cz3pt3llJ8QUGxFdyVJL2BSB-SDIL_3oF6OPDtDt9hbIEwIIK7e1ner9dvAzpnB23RAr9gDRfG9ejg85K1zliYKqTkFq5Yg4pDr1G6G9bW-gVTpFJgVMNu3-mHSs1hT90u11hopC6eaj5SNxZ_rOlUDnN2nfy-UvvPGft4fNgsn_vV69Mks-ozGj72kQhVNImT0jGiC0ZQ5ETGKVAm6oieOLfSa0kpgJcGnd8FDFEZkimJGVucdzMRbb9LPvjyuz1fFH8nBENt</recordid><startdate>1998</startdate><enddate>1998</enddate><creator>Komatsu, K.</creator><creator>Sezaki, K.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>1998</creationdate><title>Reversible discrete cosine transform</title><author>Komatsu, K. ; Sezaki, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i172t-cee15c7f2e56cc19b73ec2ee795057c6c1ae2284a64efb0a4719adb1bc57e4ff3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Continuous wavelet transforms</topic><topic>Discrete cosine transforms</topic><topic>Discrete transforms</topic><topic>Discrete wavelet transforms</topic><topic>Dynamic range</topic><topic>Equations</topic><topic>Image coding</topic><topic>Image reconstruction</topic><topic>Quantization</topic><topic>Wavelet transforms</topic><toplevel>online_resources</toplevel><creatorcontrib>Komatsu, K.</creatorcontrib><creatorcontrib>Sezaki, K.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Komatsu, K.</au><au>Sezaki, K.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Reversible discrete cosine transform</atitle><btitle>Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP '98 (Cat. No.98CH36181)</btitle><stitle>ICASSP</stitle><date>1998</date><risdate>1998</risdate><volume>3</volume><spage>1769</spage><epage>1772 vol.3</epage><pages>1769-1772 vol.3</pages><issn>1520-6149</issn><eissn>2379-190X</eissn><isbn>9780780344280</isbn><isbn>0780344286</isbn><abstract>In this paper a reversible discrete cosine transform (RDCT) is presented. The N-point reversible transform is firstly presented, then the 8-point RDCT is obtained by substituting the 2 and 4-point reversible transforms for the 2 and 4-point transforms which compose the 8-point discrete cosine transform (DCT), respectively. The integer input signal can be losslessly recovered, although the transform coefficients are integer numbers. If the floor functions are ignored in RDCT, the transform is exactly the same as DCT with determinant=1. RDCT is also normalized so that we can avoid the problem that dynamic range is nonuniform. A simulation on continuous-tone still images shows that the lossless and lossy compression efficiencies of RDCT are comparable to those obtained with reversible wavelet transform.</abstract><pub>IEEE</pub><doi>10.1109/ICASSP.1998.681802</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1520-6149 |
ispartof | Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP '98 (Cat. No.98CH36181), 1998, Vol.3, p.1769-1772 vol.3 |
issn | 1520-6149 2379-190X |
language | eng |
recordid | cdi_ieee_primary_681802 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Continuous wavelet transforms Discrete cosine transforms Discrete transforms Discrete wavelet transforms Dynamic range Equations Image coding Image reconstruction Quantization Wavelet transforms |
title | Reversible discrete cosine transform |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T15%3A16%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Reversible%20discrete%20cosine%20transform&rft.btitle=Proceedings%20of%20the%201998%20IEEE%20International%20Conference%20on%20Acoustics,%20Speech%20and%20Signal%20Processing,%20ICASSP%20'98%20(Cat.%20No.98CH36181)&rft.au=Komatsu,%20K.&rft.date=1998&rft.volume=3&rft.spage=1769&rft.epage=1772%20vol.3&rft.pages=1769-1772%20vol.3&rft.issn=1520-6149&rft.eissn=2379-190X&rft.isbn=9780780344280&rft.isbn_list=0780344286&rft_id=info:doi/10.1109/ICASSP.1998.681802&rft_dat=%3Cieee_6IE%3E681802%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=681802&rfr_iscdi=true |