Reversible discrete cosine transform

In this paper a reversible discrete cosine transform (RDCT) is presented. The N-point reversible transform is firstly presented, then the 8-point RDCT is obtained by substituting the 2 and 4-point reversible transforms for the 2 and 4-point transforms which compose the 8-point discrete cosine transf...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Komatsu, K., Sezaki, K.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1772 vol.3
container_issue
container_start_page 1769
container_title
container_volume 3
creator Komatsu, K.
Sezaki, K.
description In this paper a reversible discrete cosine transform (RDCT) is presented. The N-point reversible transform is firstly presented, then the 8-point RDCT is obtained by substituting the 2 and 4-point reversible transforms for the 2 and 4-point transforms which compose the 8-point discrete cosine transform (DCT), respectively. The integer input signal can be losslessly recovered, although the transform coefficients are integer numbers. If the floor functions are ignored in RDCT, the transform is exactly the same as DCT with determinant=1. RDCT is also normalized so that we can avoid the problem that dynamic range is nonuniform. A simulation on continuous-tone still images shows that the lossless and lossy compression efficiencies of RDCT are comparable to those obtained with reversible wavelet transform.
doi_str_mv 10.1109/ICASSP.1998.681802
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_681802</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>681802</ieee_id><sourcerecordid>681802</sourcerecordid><originalsourceid>FETCH-LOGICAL-i172t-cee15c7f2e56cc19b73ec2ee795057c6c1ae2284a64efb0a4719adb1bc57e4ff3</originalsourceid><addsrcrecordid>eNotj0tLAzEUhYMPcGjnD3Q1C7cz3pt3llJ8QUGxFdyVJL2BSB-SDIL_3oF6OPDtDt9hbIEwIIK7e1ner9dvAzpnB23RAr9gDRfG9ejg85K1zliYKqTkFq5Yg4pDr1G6G9bW-gVTpFJgVMNu3-mHSs1hT90u11hopC6eaj5SNxZ_rOlUDnN2nfy-UvvPGft4fNgsn_vV69Mks-ozGj72kQhVNImT0jGiC0ZQ5ETGKVAm6oieOLfSa0kpgJcGnd8FDFEZkimJGVucdzMRbb9LPvjyuz1fFH8nBENt</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Reversible discrete cosine transform</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Komatsu, K. ; Sezaki, K.</creator><creatorcontrib>Komatsu, K. ; Sezaki, K.</creatorcontrib><description>In this paper a reversible discrete cosine transform (RDCT) is presented. The N-point reversible transform is firstly presented, then the 8-point RDCT is obtained by substituting the 2 and 4-point reversible transforms for the 2 and 4-point transforms which compose the 8-point discrete cosine transform (DCT), respectively. The integer input signal can be losslessly recovered, although the transform coefficients are integer numbers. If the floor functions are ignored in RDCT, the transform is exactly the same as DCT with determinant=1. RDCT is also normalized so that we can avoid the problem that dynamic range is nonuniform. A simulation on continuous-tone still images shows that the lossless and lossy compression efficiencies of RDCT are comparable to those obtained with reversible wavelet transform.</description><identifier>ISSN: 1520-6149</identifier><identifier>ISBN: 9780780344280</identifier><identifier>ISBN: 0780344286</identifier><identifier>EISSN: 2379-190X</identifier><identifier>DOI: 10.1109/ICASSP.1998.681802</identifier><language>eng</language><publisher>IEEE</publisher><subject>Continuous wavelet transforms ; Discrete cosine transforms ; Discrete transforms ; Discrete wavelet transforms ; Dynamic range ; Equations ; Image coding ; Image reconstruction ; Quantization ; Wavelet transforms</subject><ispartof>Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP '98 (Cat. No.98CH36181), 1998, Vol.3, p.1769-1772 vol.3</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/681802$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,778,782,787,788,2054,4038,4039,27908,54903</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/681802$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Komatsu, K.</creatorcontrib><creatorcontrib>Sezaki, K.</creatorcontrib><title>Reversible discrete cosine transform</title><title>Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP '98 (Cat. No.98CH36181)</title><addtitle>ICASSP</addtitle><description>In this paper a reversible discrete cosine transform (RDCT) is presented. The N-point reversible transform is firstly presented, then the 8-point RDCT is obtained by substituting the 2 and 4-point reversible transforms for the 2 and 4-point transforms which compose the 8-point discrete cosine transform (DCT), respectively. The integer input signal can be losslessly recovered, although the transform coefficients are integer numbers. If the floor functions are ignored in RDCT, the transform is exactly the same as DCT with determinant=1. RDCT is also normalized so that we can avoid the problem that dynamic range is nonuniform. A simulation on continuous-tone still images shows that the lossless and lossy compression efficiencies of RDCT are comparable to those obtained with reversible wavelet transform.</description><subject>Continuous wavelet transforms</subject><subject>Discrete cosine transforms</subject><subject>Discrete transforms</subject><subject>Discrete wavelet transforms</subject><subject>Dynamic range</subject><subject>Equations</subject><subject>Image coding</subject><subject>Image reconstruction</subject><subject>Quantization</subject><subject>Wavelet transforms</subject><issn>1520-6149</issn><issn>2379-190X</issn><isbn>9780780344280</isbn><isbn>0780344286</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1998</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj0tLAzEUhYMPcGjnD3Q1C7cz3pt3llJ8QUGxFdyVJL2BSB-SDIL_3oF6OPDtDt9hbIEwIIK7e1ner9dvAzpnB23RAr9gDRfG9ejg85K1zliYKqTkFq5Yg4pDr1G6G9bW-gVTpFJgVMNu3-mHSs1hT90u11hopC6eaj5SNxZ_rOlUDnN2nfy-UvvPGft4fNgsn_vV69Mks-ozGj72kQhVNImT0jGiC0ZQ5ETGKVAm6oieOLfSa0kpgJcGnd8FDFEZkimJGVucdzMRbb9LPvjyuz1fFH8nBENt</recordid><startdate>1998</startdate><enddate>1998</enddate><creator>Komatsu, K.</creator><creator>Sezaki, K.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>1998</creationdate><title>Reversible discrete cosine transform</title><author>Komatsu, K. ; Sezaki, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i172t-cee15c7f2e56cc19b73ec2ee795057c6c1ae2284a64efb0a4719adb1bc57e4ff3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Continuous wavelet transforms</topic><topic>Discrete cosine transforms</topic><topic>Discrete transforms</topic><topic>Discrete wavelet transforms</topic><topic>Dynamic range</topic><topic>Equations</topic><topic>Image coding</topic><topic>Image reconstruction</topic><topic>Quantization</topic><topic>Wavelet transforms</topic><toplevel>online_resources</toplevel><creatorcontrib>Komatsu, K.</creatorcontrib><creatorcontrib>Sezaki, K.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Komatsu, K.</au><au>Sezaki, K.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Reversible discrete cosine transform</atitle><btitle>Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP '98 (Cat. No.98CH36181)</btitle><stitle>ICASSP</stitle><date>1998</date><risdate>1998</risdate><volume>3</volume><spage>1769</spage><epage>1772 vol.3</epage><pages>1769-1772 vol.3</pages><issn>1520-6149</issn><eissn>2379-190X</eissn><isbn>9780780344280</isbn><isbn>0780344286</isbn><abstract>In this paper a reversible discrete cosine transform (RDCT) is presented. The N-point reversible transform is firstly presented, then the 8-point RDCT is obtained by substituting the 2 and 4-point reversible transforms for the 2 and 4-point transforms which compose the 8-point discrete cosine transform (DCT), respectively. The integer input signal can be losslessly recovered, although the transform coefficients are integer numbers. If the floor functions are ignored in RDCT, the transform is exactly the same as DCT with determinant=1. RDCT is also normalized so that we can avoid the problem that dynamic range is nonuniform. A simulation on continuous-tone still images shows that the lossless and lossy compression efficiencies of RDCT are comparable to those obtained with reversible wavelet transform.</abstract><pub>IEEE</pub><doi>10.1109/ICASSP.1998.681802</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1520-6149
ispartof Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP '98 (Cat. No.98CH36181), 1998, Vol.3, p.1769-1772 vol.3
issn 1520-6149
2379-190X
language eng
recordid cdi_ieee_primary_681802
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Continuous wavelet transforms
Discrete cosine transforms
Discrete transforms
Discrete wavelet transforms
Dynamic range
Equations
Image coding
Image reconstruction
Quantization
Wavelet transforms
title Reversible discrete cosine transform
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T15%3A16%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Reversible%20discrete%20cosine%20transform&rft.btitle=Proceedings%20of%20the%201998%20IEEE%20International%20Conference%20on%20Acoustics,%20Speech%20and%20Signal%20Processing,%20ICASSP%20'98%20(Cat.%20No.98CH36181)&rft.au=Komatsu,%20K.&rft.date=1998&rft.volume=3&rft.spage=1769&rft.epage=1772%20vol.3&rft.pages=1769-1772%20vol.3&rft.issn=1520-6149&rft.eissn=2379-190X&rft.isbn=9780780344280&rft.isbn_list=0780344286&rft_id=info:doi/10.1109/ICASSP.1998.681802&rft_dat=%3Cieee_6IE%3E681802%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=681802&rfr_iscdi=true