Iterative Recovery of Dense Signals from Incomplete Measurements
Within the framework of compressed sensing, we consider dense signals, which contain both discrete as well as continuous-amplitude components. We demonstrate by a comprehensive numerical study-to the best of our knowledge the first of its kind in the literature-that dense signals can be recovered fr...
Gespeichert in:
Veröffentlicht in: | IEEE signal processing letters 2014-09, Vol.21 (9), p.1059-1063 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1063 |
---|---|
container_issue | 9 |
container_start_page | 1059 |
container_title | IEEE signal processing letters |
container_volume | 21 |
creator | Goertz, Norbert Chunli Guo Jung, Alexander Davies, Mike E. Doblinger, Gerhard |
description | Within the framework of compressed sensing, we consider dense signals, which contain both discrete as well as continuous-amplitude components. We demonstrate by a comprehensive numerical study-to the best of our knowledge the first of its kind in the literature-that dense signals can be recovered from noisy, incomplete linear measurements by simple iterative algorithms that are inspired by or are implementations of approximate message passing. Those iterative algorithms are shown to significantly outperform all other algorithms presented so far, when they use a novel noise-adaptive thresholding function that is proposed in this contribution. |
doi_str_mv | 10.1109/LSP.2014.2323973 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_6815735</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6815735</ieee_id><sourcerecordid>3443654921</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-d117b1f05f07d57a2d9c5d269090fd76abb84205be1044edb153e1354b5a39443</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFbvgpeA59SZ3Z0ke1PqV6GiWD0v-ZiVlCapu2mh_96UFk_zHp73ZXiEuEaYIIK5my8-JhJQT6SSyqTqRIyQKIulSvB0yJBCbAxk5-IihCUAZJjRSNzPevZ5X285-uSy27LfRZ2LHrkNHC3qnzZfhcj5rolmbdk16xX3HL1xHjaeG277cCnO3MDw1fGOxffz09f0NZ6_v8ymD_O4lAb7uEJMC3RADtKK0lxWpqRKJgYMuCpN8qLItAQqGEFrrgokxahIF5Qro7Uai9vD7tp3vxsOvV12G79_zyIlRJpQZQMFB6r0XQienV37usn9ziLYvSc7eLJ7T_boaajcHCo1M__jSYaUKlJ_qARitQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1565545138</pqid></control><display><type>article</type><title>Iterative Recovery of Dense Signals from Incomplete Measurements</title><source>IEEE Electronic Library (IEL)</source><creator>Goertz, Norbert ; Chunli Guo ; Jung, Alexander ; Davies, Mike E. ; Doblinger, Gerhard</creator><creatorcontrib>Goertz, Norbert ; Chunli Guo ; Jung, Alexander ; Davies, Mike E. ; Doblinger, Gerhard</creatorcontrib><description>Within the framework of compressed sensing, we consider dense signals, which contain both discrete as well as continuous-amplitude components. We demonstrate by a comprehensive numerical study-to the best of our knowledge the first of its kind in the literature-that dense signals can be recovered from noisy, incomplete linear measurements by simple iterative algorithms that are inspired by or are implementations of approximate message passing. Those iterative algorithms are shown to significantly outperform all other algorithms presented so far, when they use a novel noise-adaptive thresholding function that is proposed in this contribution.</description><identifier>ISSN: 1070-9908</identifier><identifier>EISSN: 1558-2361</identifier><identifier>DOI: 10.1109/LSP.2014.2323973</identifier><identifier>CODEN: ISPLEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Approximate message passing ; Compressed sensing ; dense signals ; iterative recovery ; Message passing ; Noise measurement ; Signal processing algorithms ; Signal to noise ratio ; Vectors</subject><ispartof>IEEE signal processing letters, 2014-09, Vol.21 (9), p.1059-1063</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Sep 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-d117b1f05f07d57a2d9c5d269090fd76abb84205be1044edb153e1354b5a39443</citedby><cites>FETCH-LOGICAL-c291t-d117b1f05f07d57a2d9c5d269090fd76abb84205be1044edb153e1354b5a39443</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6815735$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6815735$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Goertz, Norbert</creatorcontrib><creatorcontrib>Chunli Guo</creatorcontrib><creatorcontrib>Jung, Alexander</creatorcontrib><creatorcontrib>Davies, Mike E.</creatorcontrib><creatorcontrib>Doblinger, Gerhard</creatorcontrib><title>Iterative Recovery of Dense Signals from Incomplete Measurements</title><title>IEEE signal processing letters</title><addtitle>LSP</addtitle><description>Within the framework of compressed sensing, we consider dense signals, which contain both discrete as well as continuous-amplitude components. We demonstrate by a comprehensive numerical study-to the best of our knowledge the first of its kind in the literature-that dense signals can be recovered from noisy, incomplete linear measurements by simple iterative algorithms that are inspired by or are implementations of approximate message passing. Those iterative algorithms are shown to significantly outperform all other algorithms presented so far, when they use a novel noise-adaptive thresholding function that is proposed in this contribution.</description><subject>Approximate message passing</subject><subject>Compressed sensing</subject><subject>dense signals</subject><subject>iterative recovery</subject><subject>Message passing</subject><subject>Noise measurement</subject><subject>Signal processing algorithms</subject><subject>Signal to noise ratio</subject><subject>Vectors</subject><issn>1070-9908</issn><issn>1558-2361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AQhhdRsFbvgpeA59SZ3Z0ke1PqV6GiWD0v-ZiVlCapu2mh_96UFk_zHp73ZXiEuEaYIIK5my8-JhJQT6SSyqTqRIyQKIulSvB0yJBCbAxk5-IihCUAZJjRSNzPevZ5X285-uSy27LfRZ2LHrkNHC3qnzZfhcj5rolmbdk16xX3HL1xHjaeG277cCnO3MDw1fGOxffz09f0NZ6_v8ymD_O4lAb7uEJMC3RADtKK0lxWpqRKJgYMuCpN8qLItAQqGEFrrgokxahIF5Qro7Uai9vD7tp3vxsOvV12G79_zyIlRJpQZQMFB6r0XQienV37usn9ziLYvSc7eLJ7T_boaajcHCo1M__jSYaUKlJ_qARitQ</recordid><startdate>20140901</startdate><enddate>20140901</enddate><creator>Goertz, Norbert</creator><creator>Chunli Guo</creator><creator>Jung, Alexander</creator><creator>Davies, Mike E.</creator><creator>Doblinger, Gerhard</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20140901</creationdate><title>Iterative Recovery of Dense Signals from Incomplete Measurements</title><author>Goertz, Norbert ; Chunli Guo ; Jung, Alexander ; Davies, Mike E. ; Doblinger, Gerhard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-d117b1f05f07d57a2d9c5d269090fd76abb84205be1044edb153e1354b5a39443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Approximate message passing</topic><topic>Compressed sensing</topic><topic>dense signals</topic><topic>iterative recovery</topic><topic>Message passing</topic><topic>Noise measurement</topic><topic>Signal processing algorithms</topic><topic>Signal to noise ratio</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Goertz, Norbert</creatorcontrib><creatorcontrib>Chunli Guo</creatorcontrib><creatorcontrib>Jung, Alexander</creatorcontrib><creatorcontrib>Davies, Mike E.</creatorcontrib><creatorcontrib>Doblinger, Gerhard</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE signal processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Goertz, Norbert</au><au>Chunli Guo</au><au>Jung, Alexander</au><au>Davies, Mike E.</au><au>Doblinger, Gerhard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Iterative Recovery of Dense Signals from Incomplete Measurements</atitle><jtitle>IEEE signal processing letters</jtitle><stitle>LSP</stitle><date>2014-09-01</date><risdate>2014</risdate><volume>21</volume><issue>9</issue><spage>1059</spage><epage>1063</epage><pages>1059-1063</pages><issn>1070-9908</issn><eissn>1558-2361</eissn><coden>ISPLEM</coden><abstract>Within the framework of compressed sensing, we consider dense signals, which contain both discrete as well as continuous-amplitude components. We demonstrate by a comprehensive numerical study-to the best of our knowledge the first of its kind in the literature-that dense signals can be recovered from noisy, incomplete linear measurements by simple iterative algorithms that are inspired by or are implementations of approximate message passing. Those iterative algorithms are shown to significantly outperform all other algorithms presented so far, when they use a novel noise-adaptive thresholding function that is proposed in this contribution.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LSP.2014.2323973</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1070-9908 |
ispartof | IEEE signal processing letters, 2014-09, Vol.21 (9), p.1059-1063 |
issn | 1070-9908 1558-2361 |
language | eng |
recordid | cdi_ieee_primary_6815735 |
source | IEEE Electronic Library (IEL) |
subjects | Approximate message passing Compressed sensing dense signals iterative recovery Message passing Noise measurement Signal processing algorithms Signal to noise ratio Vectors |
title | Iterative Recovery of Dense Signals from Incomplete Measurements |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T23%3A22%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Iterative%20Recovery%20of%20Dense%20Signals%20from%20Incomplete%20Measurements&rft.jtitle=IEEE%20signal%20processing%20letters&rft.au=Goertz,%20Norbert&rft.date=2014-09-01&rft.volume=21&rft.issue=9&rft.spage=1059&rft.epage=1063&rft.pages=1059-1063&rft.issn=1070-9908&rft.eissn=1558-2361&rft.coden=ISPLEM&rft_id=info:doi/10.1109/LSP.2014.2323973&rft_dat=%3Cproquest_RIE%3E3443654921%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1565545138&rft_id=info:pmid/&rft_ieee_id=6815735&rfr_iscdi=true |