Iterative Recovery of Dense Signals from Incomplete Measurements

Within the framework of compressed sensing, we consider dense signals, which contain both discrete as well as continuous-amplitude components. We demonstrate by a comprehensive numerical study-to the best of our knowledge the first of its kind in the literature-that dense signals can be recovered fr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE signal processing letters 2014-09, Vol.21 (9), p.1059-1063
Hauptverfasser: Goertz, Norbert, Chunli Guo, Jung, Alexander, Davies, Mike E., Doblinger, Gerhard
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1063
container_issue 9
container_start_page 1059
container_title IEEE signal processing letters
container_volume 21
creator Goertz, Norbert
Chunli Guo
Jung, Alexander
Davies, Mike E.
Doblinger, Gerhard
description Within the framework of compressed sensing, we consider dense signals, which contain both discrete as well as continuous-amplitude components. We demonstrate by a comprehensive numerical study-to the best of our knowledge the first of its kind in the literature-that dense signals can be recovered from noisy, incomplete linear measurements by simple iterative algorithms that are inspired by or are implementations of approximate message passing. Those iterative algorithms are shown to significantly outperform all other algorithms presented so far, when they use a novel noise-adaptive thresholding function that is proposed in this contribution.
doi_str_mv 10.1109/LSP.2014.2323973
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_6815735</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6815735</ieee_id><sourcerecordid>3443654921</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-d117b1f05f07d57a2d9c5d269090fd76abb84205be1044edb153e1354b5a39443</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFbvgpeA59SZ3Z0ke1PqV6GiWD0v-ZiVlCapu2mh_96UFk_zHp73ZXiEuEaYIIK5my8-JhJQT6SSyqTqRIyQKIulSvB0yJBCbAxk5-IihCUAZJjRSNzPevZ5X285-uSy27LfRZ2LHrkNHC3qnzZfhcj5rolmbdk16xX3HL1xHjaeG277cCnO3MDw1fGOxffz09f0NZ6_v8ymD_O4lAb7uEJMC3RADtKK0lxWpqRKJgYMuCpN8qLItAQqGEFrrgokxahIF5Qro7Uai9vD7tp3vxsOvV12G79_zyIlRJpQZQMFB6r0XQienV37usn9ziLYvSc7eLJ7T_boaajcHCo1M__jSYaUKlJ_qARitQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1565545138</pqid></control><display><type>article</type><title>Iterative Recovery of Dense Signals from Incomplete Measurements</title><source>IEEE Electronic Library (IEL)</source><creator>Goertz, Norbert ; Chunli Guo ; Jung, Alexander ; Davies, Mike E. ; Doblinger, Gerhard</creator><creatorcontrib>Goertz, Norbert ; Chunli Guo ; Jung, Alexander ; Davies, Mike E. ; Doblinger, Gerhard</creatorcontrib><description>Within the framework of compressed sensing, we consider dense signals, which contain both discrete as well as continuous-amplitude components. We demonstrate by a comprehensive numerical study-to the best of our knowledge the first of its kind in the literature-that dense signals can be recovered from noisy, incomplete linear measurements by simple iterative algorithms that are inspired by or are implementations of approximate message passing. Those iterative algorithms are shown to significantly outperform all other algorithms presented so far, when they use a novel noise-adaptive thresholding function that is proposed in this contribution.</description><identifier>ISSN: 1070-9908</identifier><identifier>EISSN: 1558-2361</identifier><identifier>DOI: 10.1109/LSP.2014.2323973</identifier><identifier>CODEN: ISPLEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Approximate message passing ; Compressed sensing ; dense signals ; iterative recovery ; Message passing ; Noise measurement ; Signal processing algorithms ; Signal to noise ratio ; Vectors</subject><ispartof>IEEE signal processing letters, 2014-09, Vol.21 (9), p.1059-1063</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Sep 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-d117b1f05f07d57a2d9c5d269090fd76abb84205be1044edb153e1354b5a39443</citedby><cites>FETCH-LOGICAL-c291t-d117b1f05f07d57a2d9c5d269090fd76abb84205be1044edb153e1354b5a39443</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6815735$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6815735$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Goertz, Norbert</creatorcontrib><creatorcontrib>Chunli Guo</creatorcontrib><creatorcontrib>Jung, Alexander</creatorcontrib><creatorcontrib>Davies, Mike E.</creatorcontrib><creatorcontrib>Doblinger, Gerhard</creatorcontrib><title>Iterative Recovery of Dense Signals from Incomplete Measurements</title><title>IEEE signal processing letters</title><addtitle>LSP</addtitle><description>Within the framework of compressed sensing, we consider dense signals, which contain both discrete as well as continuous-amplitude components. We demonstrate by a comprehensive numerical study-to the best of our knowledge the first of its kind in the literature-that dense signals can be recovered from noisy, incomplete linear measurements by simple iterative algorithms that are inspired by or are implementations of approximate message passing. Those iterative algorithms are shown to significantly outperform all other algorithms presented so far, when they use a novel noise-adaptive thresholding function that is proposed in this contribution.</description><subject>Approximate message passing</subject><subject>Compressed sensing</subject><subject>dense signals</subject><subject>iterative recovery</subject><subject>Message passing</subject><subject>Noise measurement</subject><subject>Signal processing algorithms</subject><subject>Signal to noise ratio</subject><subject>Vectors</subject><issn>1070-9908</issn><issn>1558-2361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AQhhdRsFbvgpeA59SZ3Z0ke1PqV6GiWD0v-ZiVlCapu2mh_96UFk_zHp73ZXiEuEaYIIK5my8-JhJQT6SSyqTqRIyQKIulSvB0yJBCbAxk5-IihCUAZJjRSNzPevZ5X285-uSy27LfRZ2LHrkNHC3qnzZfhcj5rolmbdk16xX3HL1xHjaeG277cCnO3MDw1fGOxffz09f0NZ6_v8ymD_O4lAb7uEJMC3RADtKK0lxWpqRKJgYMuCpN8qLItAQqGEFrrgokxahIF5Qro7Uai9vD7tp3vxsOvV12G79_zyIlRJpQZQMFB6r0XQienV37usn9ziLYvSc7eLJ7T_boaajcHCo1M__jSYaUKlJ_qARitQ</recordid><startdate>20140901</startdate><enddate>20140901</enddate><creator>Goertz, Norbert</creator><creator>Chunli Guo</creator><creator>Jung, Alexander</creator><creator>Davies, Mike E.</creator><creator>Doblinger, Gerhard</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20140901</creationdate><title>Iterative Recovery of Dense Signals from Incomplete Measurements</title><author>Goertz, Norbert ; Chunli Guo ; Jung, Alexander ; Davies, Mike E. ; Doblinger, Gerhard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-d117b1f05f07d57a2d9c5d269090fd76abb84205be1044edb153e1354b5a39443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Approximate message passing</topic><topic>Compressed sensing</topic><topic>dense signals</topic><topic>iterative recovery</topic><topic>Message passing</topic><topic>Noise measurement</topic><topic>Signal processing algorithms</topic><topic>Signal to noise ratio</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Goertz, Norbert</creatorcontrib><creatorcontrib>Chunli Guo</creatorcontrib><creatorcontrib>Jung, Alexander</creatorcontrib><creatorcontrib>Davies, Mike E.</creatorcontrib><creatorcontrib>Doblinger, Gerhard</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE signal processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Goertz, Norbert</au><au>Chunli Guo</au><au>Jung, Alexander</au><au>Davies, Mike E.</au><au>Doblinger, Gerhard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Iterative Recovery of Dense Signals from Incomplete Measurements</atitle><jtitle>IEEE signal processing letters</jtitle><stitle>LSP</stitle><date>2014-09-01</date><risdate>2014</risdate><volume>21</volume><issue>9</issue><spage>1059</spage><epage>1063</epage><pages>1059-1063</pages><issn>1070-9908</issn><eissn>1558-2361</eissn><coden>ISPLEM</coden><abstract>Within the framework of compressed sensing, we consider dense signals, which contain both discrete as well as continuous-amplitude components. We demonstrate by a comprehensive numerical study-to the best of our knowledge the first of its kind in the literature-that dense signals can be recovered from noisy, incomplete linear measurements by simple iterative algorithms that are inspired by or are implementations of approximate message passing. Those iterative algorithms are shown to significantly outperform all other algorithms presented so far, when they use a novel noise-adaptive thresholding function that is proposed in this contribution.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LSP.2014.2323973</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1070-9908
ispartof IEEE signal processing letters, 2014-09, Vol.21 (9), p.1059-1063
issn 1070-9908
1558-2361
language eng
recordid cdi_ieee_primary_6815735
source IEEE Electronic Library (IEL)
subjects Approximate message passing
Compressed sensing
dense signals
iterative recovery
Message passing
Noise measurement
Signal processing algorithms
Signal to noise ratio
Vectors
title Iterative Recovery of Dense Signals from Incomplete Measurements
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T23%3A22%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Iterative%20Recovery%20of%20Dense%20Signals%20from%20Incomplete%20Measurements&rft.jtitle=IEEE%20signal%20processing%20letters&rft.au=Goertz,%20Norbert&rft.date=2014-09-01&rft.volume=21&rft.issue=9&rft.spage=1059&rft.epage=1063&rft.pages=1059-1063&rft.issn=1070-9908&rft.eissn=1558-2361&rft.coden=ISPLEM&rft_id=info:doi/10.1109/LSP.2014.2323973&rft_dat=%3Cproquest_RIE%3E3443654921%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1565545138&rft_id=info:pmid/&rft_ieee_id=6815735&rfr_iscdi=true