Blind signal separation with a projection pursuit index

Blind signal separation (BSS) is a powerful technique for separation of mixed signals with weak assumptions on the incoming signals. The objectives of BSS are analogous to the objectives of exploratory projection pursuit which is widely used in the statistical community for finding structure in high...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Sarajedini, A., Chau, P.M.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2128 vol.4
container_issue
container_start_page 2125
container_title
container_volume 4
creator Sarajedini, A.
Chau, P.M.
description Blind signal separation (BSS) is a powerful technique for separation of mixed signals with weak assumptions on the incoming signals. The objectives of BSS are analogous to the objectives of exploratory projection pursuit which is widely used in the statistical community for finding structure in high dimensional data sets. In this paper, we adapt exploratory projection pursuit for BSS. First, we introduce exploratory projection pursuit and the associated projection pursuit index (PPI). We adapt the PPI for application to BSS. We also investigate the order of approximation required to achieve satisfactory separation using the PPI, and compare its performance to a maximum-likelihood BSS technique using a Gram-Charlier expansion.
doi_str_mv 10.1109/ICASSP.1998.681565
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_681565</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>681565</ieee_id><sourcerecordid>681565</sourcerecordid><originalsourceid>FETCH-LOGICAL-i172t-a603b0e211f8a581b731b6f9f1eee8171321e3d28378a98f6e0a67f2e161259a3</originalsourceid><addsrcrecordid>eNotT9tKw0AUXLyAoeYH-rQ_kHjObvb2qEWtUFCogm_lxO7qlpiG3RT17w3WYWBgmHOYYWyOUCOCu3pYXK_XTzU6Z2ttUWl1wgohjavQwespK52xMFE2jbBwxgpUAiqNjbtgZc47mNAoBUYVzNx0sd_yHN976nj2AyUa477nX3H84MSHtN_5tz9nOKR8iCOf8v77kp0H6rIv_3XGXu5unxfLavV4P_VbVRGNGCvSIFvwAjFYUhZbI7HVwQX03ls0KAV6uRVWGkvOBu2BtAnCo0ahHMkZmx__xulgM6T4Selnc1wtfwHcw0jB</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Blind signal separation with a projection pursuit index</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Sarajedini, A. ; Chau, P.M.</creator><creatorcontrib>Sarajedini, A. ; Chau, P.M.</creatorcontrib><description>Blind signal separation (BSS) is a powerful technique for separation of mixed signals with weak assumptions on the incoming signals. The objectives of BSS are analogous to the objectives of exploratory projection pursuit which is widely used in the statistical community for finding structure in high dimensional data sets. In this paper, we adapt exploratory projection pursuit for BSS. First, we introduce exploratory projection pursuit and the associated projection pursuit index (PPI). We adapt the PPI for application to BSS. We also investigate the order of approximation required to achieve satisfactory separation using the PPI, and compare its performance to a maximum-likelihood BSS technique using a Gram-Charlier expansion.</description><identifier>ISSN: 1520-6149</identifier><identifier>ISBN: 9780780344280</identifier><identifier>ISBN: 0780344286</identifier><identifier>EISSN: 2379-190X</identifier><identifier>DOI: 10.1109/ICASSP.1998.681565</identifier><language>eng</language><publisher>IEEE</publisher><subject>Additive white noise ; Blind source separation ; Covariance matrix ; Density measurement ; Eigenvalues and eigenfunctions ; Equations ; Function approximation ; Gaussian noise ; Gaussian processes ; Polynomials</subject><ispartof>Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP '98 (Cat. No.98CH36181), 1998, Vol.4, p.2125-2128 vol.4</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/681565$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,4048,4049,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/681565$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sarajedini, A.</creatorcontrib><creatorcontrib>Chau, P.M.</creatorcontrib><title>Blind signal separation with a projection pursuit index</title><title>Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP '98 (Cat. No.98CH36181)</title><addtitle>ICASSP</addtitle><description>Blind signal separation (BSS) is a powerful technique for separation of mixed signals with weak assumptions on the incoming signals. The objectives of BSS are analogous to the objectives of exploratory projection pursuit which is widely used in the statistical community for finding structure in high dimensional data sets. In this paper, we adapt exploratory projection pursuit for BSS. First, we introduce exploratory projection pursuit and the associated projection pursuit index (PPI). We adapt the PPI for application to BSS. We also investigate the order of approximation required to achieve satisfactory separation using the PPI, and compare its performance to a maximum-likelihood BSS technique using a Gram-Charlier expansion.</description><subject>Additive white noise</subject><subject>Blind source separation</subject><subject>Covariance matrix</subject><subject>Density measurement</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Equations</subject><subject>Function approximation</subject><subject>Gaussian noise</subject><subject>Gaussian processes</subject><subject>Polynomials</subject><issn>1520-6149</issn><issn>2379-190X</issn><isbn>9780780344280</isbn><isbn>0780344286</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1998</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotT9tKw0AUXLyAoeYH-rQ_kHjObvb2qEWtUFCogm_lxO7qlpiG3RT17w3WYWBgmHOYYWyOUCOCu3pYXK_XTzU6Z2ttUWl1wgohjavQwespK52xMFE2jbBwxgpUAiqNjbtgZc47mNAoBUYVzNx0sd_yHN976nj2AyUa477nX3H84MSHtN_5tz9nOKR8iCOf8v77kp0H6rIv_3XGXu5unxfLavV4P_VbVRGNGCvSIFvwAjFYUhZbI7HVwQX03ls0KAV6uRVWGkvOBu2BtAnCo0ahHMkZmx__xulgM6T4Selnc1wtfwHcw0jB</recordid><startdate>1998</startdate><enddate>1998</enddate><creator>Sarajedini, A.</creator><creator>Chau, P.M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>1998</creationdate><title>Blind signal separation with a projection pursuit index</title><author>Sarajedini, A. ; Chau, P.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i172t-a603b0e211f8a581b731b6f9f1eee8171321e3d28378a98f6e0a67f2e161259a3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Additive white noise</topic><topic>Blind source separation</topic><topic>Covariance matrix</topic><topic>Density measurement</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Equations</topic><topic>Function approximation</topic><topic>Gaussian noise</topic><topic>Gaussian processes</topic><topic>Polynomials</topic><toplevel>online_resources</toplevel><creatorcontrib>Sarajedini, A.</creatorcontrib><creatorcontrib>Chau, P.M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sarajedini, A.</au><au>Chau, P.M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Blind signal separation with a projection pursuit index</atitle><btitle>Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP '98 (Cat. No.98CH36181)</btitle><stitle>ICASSP</stitle><date>1998</date><risdate>1998</risdate><volume>4</volume><spage>2125</spage><epage>2128 vol.4</epage><pages>2125-2128 vol.4</pages><issn>1520-6149</issn><eissn>2379-190X</eissn><isbn>9780780344280</isbn><isbn>0780344286</isbn><abstract>Blind signal separation (BSS) is a powerful technique for separation of mixed signals with weak assumptions on the incoming signals. The objectives of BSS are analogous to the objectives of exploratory projection pursuit which is widely used in the statistical community for finding structure in high dimensional data sets. In this paper, we adapt exploratory projection pursuit for BSS. First, we introduce exploratory projection pursuit and the associated projection pursuit index (PPI). We adapt the PPI for application to BSS. We also investigate the order of approximation required to achieve satisfactory separation using the PPI, and compare its performance to a maximum-likelihood BSS technique using a Gram-Charlier expansion.</abstract><pub>IEEE</pub><doi>10.1109/ICASSP.1998.681565</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1520-6149
ispartof Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP '98 (Cat. No.98CH36181), 1998, Vol.4, p.2125-2128 vol.4
issn 1520-6149
2379-190X
language eng
recordid cdi_ieee_primary_681565
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Additive white noise
Blind source separation
Covariance matrix
Density measurement
Eigenvalues and eigenfunctions
Equations
Function approximation
Gaussian noise
Gaussian processes
Polynomials
title Blind signal separation with a projection pursuit index
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T16%3A20%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Blind%20signal%20separation%20with%20a%20projection%20pursuit%20index&rft.btitle=Proceedings%20of%20the%201998%20IEEE%20International%20Conference%20on%20Acoustics,%20Speech%20and%20Signal%20Processing,%20ICASSP%20'98%20(Cat.%20No.98CH36181)&rft.au=Sarajedini,%20A.&rft.date=1998&rft.volume=4&rft.spage=2125&rft.epage=2128%20vol.4&rft.pages=2125-2128%20vol.4&rft.issn=1520-6149&rft.eissn=2379-190X&rft.isbn=9780780344280&rft.isbn_list=0780344286&rft_id=info:doi/10.1109/ICASSP.1998.681565&rft_dat=%3Cieee_6IE%3E681565%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=681565&rfr_iscdi=true