A Measurement Rate-MSE Tradeoff for Compressive Sensing Through Partial Support Recovery

We consider the problem of estimating sparse vectors from noisy linear measurements in the high dimensionality regime. For a fixed number k of nonzero entries, we study the fundamental relationship between two relevant quantities: the measurement rate, which characterizes the asymptotic behavior of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 2014-09, Vol.62 (18), p.4643-4658
Hauptverfasser: Blasco-Serrano, Ricardo, Zachariah, Dave, Sundman, Dennis, Thobaben, Ragnar, Skoglund, Mikael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4658
container_issue 18
container_start_page 4643
container_title IEEE transactions on signal processing
container_volume 62
creator Blasco-Serrano, Ricardo
Zachariah, Dave
Sundman, Dennis
Thobaben, Ragnar
Skoglund, Mikael
description We consider the problem of estimating sparse vectors from noisy linear measurements in the high dimensionality regime. For a fixed number k of nonzero entries, we study the fundamental relationship between two relevant quantities: the measurement rate, which characterizes the asymptotic behavior of the dimensions of the measurement matrix in terms of the ratio m/log n (with m being the number of measurements and n the dimension of the sparse vector), and the estimation mean square error. First, we use an information-theoretic approach to derive sufficient conditions on the measurement rate to reliably recover a part of the support set that represents a certain fraction of the total vector power. Second, we characterize the mean square error of an estimator that uses partial support set information. Using these two parts, we derive a tradeoff between the measurement rate and the mean-square error. This tradeoff is achievable using a two-step approach: first support set recovery, and then estimation of the active components. Finally, for both deterministic and random vectors, we perform a numerical evaluation to verify the advantages of the methods based on partial support set recovery.
doi_str_mv 10.1109/TSP.2014.2321739
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_6810173</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6810173</ieee_id><sourcerecordid>1567061410</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-22fd57e1004137efa4f52d3df2bf039d4840b237b482e9256d938788f190f17f3</originalsourceid><addsrcrecordid>eNpd0U1LAzEQBuBFFPy8C14CXrxsnUmym91jqZ-gKLaKt5B2J-1qu1mTXcV_b0rFg6cM5JlhhjdJjhEGiFCeT8aPAw4oB1xwVKLcSvawlJiCVPl2rCETaVao191kP4Q3iFKW-V7yOmT3ZELvaUVNx55MR-n9-JJNvKnIWcus82zkVq2nEOpPYmNqQt3M2WThXT9fsEfju9os2bhvW-fjBJq5T_Lfh8mONctAR7_vQfJ8dTkZ3aR3D9e3o-FdOpMgu5RzW2WKEECiUGSNtBmvRGX51IIoK1lImHKhprLgVPIsr0pRqKKwWIJFZcVBkm7mhi9q-6lufb0y_ls7U-uL-mWonZ_r926h48ESZfRnG99699FT6PSqDjNaLk1Drg8as1xBjhIh0tN_9M31vonXrFWWiUJwFRVs1My7EDzZvxUQ9DoaHaPR62j0bzSx5WTTUhPRH88LhPgtfgBhpojH</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1565538327</pqid></control><display><type>article</type><title>A Measurement Rate-MSE Tradeoff for Compressive Sensing Through Partial Support Recovery</title><source>IEEE Electronic Library (IEL)</source><creator>Blasco-Serrano, Ricardo ; Zachariah, Dave ; Sundman, Dennis ; Thobaben, Ragnar ; Skoglund, Mikael</creator><creatorcontrib>Blasco-Serrano, Ricardo ; Zachariah, Dave ; Sundman, Dennis ; Thobaben, Ragnar ; Skoglund, Mikael</creatorcontrib><description>We consider the problem of estimating sparse vectors from noisy linear measurements in the high dimensionality regime. For a fixed number k of nonzero entries, we study the fundamental relationship between two relevant quantities: the measurement rate, which characterizes the asymptotic behavior of the dimensions of the measurement matrix in terms of the ratio m/log n (with m being the number of measurements and n the dimension of the sparse vector), and the estimation mean square error. First, we use an information-theoretic approach to derive sufficient conditions on the measurement rate to reliably recover a part of the support set that represents a certain fraction of the total vector power. Second, we characterize the mean square error of an estimator that uses partial support set information. Using these two parts, we derive a tradeoff between the measurement rate and the mean-square error. This tradeoff is achievable using a two-step approach: first support set recovery, and then estimation of the active components. Finally, for both deterministic and random vectors, we perform a numerical evaluation to verify the advantages of the methods based on partial support set recovery.</description><identifier>ISSN: 1053-587X</identifier><identifier>ISSN: 1941-0476</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2014.2321739</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Asymptotic properties ; Compressed sensing ; Compressive sensing ; Dimensional measurements ; Error analysis ; Errors ; Estimation ; Mathematical analysis ; Mean square errors ; Mean square values ; Measurement uncertainty ; MSE ; Noise ; performance tradeoff ; Pollution measurement ; Recovery ; Sparse matrices ; sparse signal ; support recovery ; Vectors ; Vectors (mathematics)</subject><ispartof>IEEE transactions on signal processing, 2014-09, Vol.62 (18), p.4643-4658</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c404t-22fd57e1004137efa4f52d3df2bf039d4840b237b482e9256d938788f190f17f3</citedby><cites>FETCH-LOGICAL-c404t-22fd57e1004137efa4f52d3df2bf039d4840b237b482e9256d938788f190f17f3</cites><orcidid>0000-0003-2186-9402</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6810173$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,550,776,780,792,881,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6810173$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-144414$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Blasco-Serrano, Ricardo</creatorcontrib><creatorcontrib>Zachariah, Dave</creatorcontrib><creatorcontrib>Sundman, Dennis</creatorcontrib><creatorcontrib>Thobaben, Ragnar</creatorcontrib><creatorcontrib>Skoglund, Mikael</creatorcontrib><title>A Measurement Rate-MSE Tradeoff for Compressive Sensing Through Partial Support Recovery</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>We consider the problem of estimating sparse vectors from noisy linear measurements in the high dimensionality regime. For a fixed number k of nonzero entries, we study the fundamental relationship between two relevant quantities: the measurement rate, which characterizes the asymptotic behavior of the dimensions of the measurement matrix in terms of the ratio m/log n (with m being the number of measurements and n the dimension of the sparse vector), and the estimation mean square error. First, we use an information-theoretic approach to derive sufficient conditions on the measurement rate to reliably recover a part of the support set that represents a certain fraction of the total vector power. Second, we characterize the mean square error of an estimator that uses partial support set information. Using these two parts, we derive a tradeoff between the measurement rate and the mean-square error. This tradeoff is achievable using a two-step approach: first support set recovery, and then estimation of the active components. Finally, for both deterministic and random vectors, we perform a numerical evaluation to verify the advantages of the methods based on partial support set recovery.</description><subject>Asymptotic properties</subject><subject>Compressed sensing</subject><subject>Compressive sensing</subject><subject>Dimensional measurements</subject><subject>Error analysis</subject><subject>Errors</subject><subject>Estimation</subject><subject>Mathematical analysis</subject><subject>Mean square errors</subject><subject>Mean square values</subject><subject>Measurement uncertainty</subject><subject>MSE</subject><subject>Noise</subject><subject>performance tradeoff</subject><subject>Pollution measurement</subject><subject>Recovery</subject><subject>Sparse matrices</subject><subject>sparse signal</subject><subject>support recovery</subject><subject>Vectors</subject><subject>Vectors (mathematics)</subject><issn>1053-587X</issn><issn>1941-0476</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>D8T</sourceid><recordid>eNpd0U1LAzEQBuBFFPy8C14CXrxsnUmym91jqZ-gKLaKt5B2J-1qu1mTXcV_b0rFg6cM5JlhhjdJjhEGiFCeT8aPAw4oB1xwVKLcSvawlJiCVPl2rCETaVao191kP4Q3iFKW-V7yOmT3ZELvaUVNx55MR-n9-JJNvKnIWcus82zkVq2nEOpPYmNqQt3M2WThXT9fsEfju9os2bhvW-fjBJq5T_Lfh8mONctAR7_vQfJ8dTkZ3aR3D9e3o-FdOpMgu5RzW2WKEECiUGSNtBmvRGX51IIoK1lImHKhprLgVPIsr0pRqKKwWIJFZcVBkm7mhi9q-6lufb0y_ls7U-uL-mWonZ_r926h48ESZfRnG99699FT6PSqDjNaLk1Drg8as1xBjhIh0tN_9M31vonXrFWWiUJwFRVs1My7EDzZvxUQ9DoaHaPR62j0bzSx5WTTUhPRH88LhPgtfgBhpojH</recordid><startdate>20140915</startdate><enddate>20140915</enddate><creator>Blasco-Serrano, Ricardo</creator><creator>Zachariah, Dave</creator><creator>Sundman, Dennis</creator><creator>Thobaben, Ragnar</creator><creator>Skoglund, Mikael</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope><scope>ADTPV</scope><scope>AFDQA</scope><scope>AOWAS</scope><scope>D8T</scope><scope>D8V</scope><scope>ZZAVC</scope><orcidid>https://orcid.org/0000-0003-2186-9402</orcidid></search><sort><creationdate>20140915</creationdate><title>A Measurement Rate-MSE Tradeoff for Compressive Sensing Through Partial Support Recovery</title><author>Blasco-Serrano, Ricardo ; Zachariah, Dave ; Sundman, Dennis ; Thobaben, Ragnar ; Skoglund, Mikael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-22fd57e1004137efa4f52d3df2bf039d4840b237b482e9256d938788f190f17f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Asymptotic properties</topic><topic>Compressed sensing</topic><topic>Compressive sensing</topic><topic>Dimensional measurements</topic><topic>Error analysis</topic><topic>Errors</topic><topic>Estimation</topic><topic>Mathematical analysis</topic><topic>Mean square errors</topic><topic>Mean square values</topic><topic>Measurement uncertainty</topic><topic>MSE</topic><topic>Noise</topic><topic>performance tradeoff</topic><topic>Pollution measurement</topic><topic>Recovery</topic><topic>Sparse matrices</topic><topic>sparse signal</topic><topic>support recovery</topic><topic>Vectors</topic><topic>Vectors (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Blasco-Serrano, Ricardo</creatorcontrib><creatorcontrib>Zachariah, Dave</creatorcontrib><creatorcontrib>Sundman, Dennis</creatorcontrib><creatorcontrib>Thobaben, Ragnar</creatorcontrib><creatorcontrib>Skoglund, Mikael</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>SwePub</collection><collection>SWEPUB Kungliga Tekniska Högskolan full text</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Kungliga Tekniska Högskolan</collection><collection>SwePub Articles full text</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Blasco-Serrano, Ricardo</au><au>Zachariah, Dave</au><au>Sundman, Dennis</au><au>Thobaben, Ragnar</au><au>Skoglund, Mikael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Measurement Rate-MSE Tradeoff for Compressive Sensing Through Partial Support Recovery</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2014-09-15</date><risdate>2014</risdate><volume>62</volume><issue>18</issue><spage>4643</spage><epage>4658</epage><pages>4643-4658</pages><issn>1053-587X</issn><issn>1941-0476</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>We consider the problem of estimating sparse vectors from noisy linear measurements in the high dimensionality regime. For a fixed number k of nonzero entries, we study the fundamental relationship between two relevant quantities: the measurement rate, which characterizes the asymptotic behavior of the dimensions of the measurement matrix in terms of the ratio m/log n (with m being the number of measurements and n the dimension of the sparse vector), and the estimation mean square error. First, we use an information-theoretic approach to derive sufficient conditions on the measurement rate to reliably recover a part of the support set that represents a certain fraction of the total vector power. Second, we characterize the mean square error of an estimator that uses partial support set information. Using these two parts, we derive a tradeoff between the measurement rate and the mean-square error. This tradeoff is achievable using a two-step approach: first support set recovery, and then estimation of the active components. Finally, for both deterministic and random vectors, we perform a numerical evaluation to verify the advantages of the methods based on partial support set recovery.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TSP.2014.2321739</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-2186-9402</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1053-587X
ispartof IEEE transactions on signal processing, 2014-09, Vol.62 (18), p.4643-4658
issn 1053-587X
1941-0476
1941-0476
language eng
recordid cdi_ieee_primary_6810173
source IEEE Electronic Library (IEL)
subjects Asymptotic properties
Compressed sensing
Compressive sensing
Dimensional measurements
Error analysis
Errors
Estimation
Mathematical analysis
Mean square errors
Mean square values
Measurement uncertainty
MSE
Noise
performance tradeoff
Pollution measurement
Recovery
Sparse matrices
sparse signal
support recovery
Vectors
Vectors (mathematics)
title A Measurement Rate-MSE Tradeoff for Compressive Sensing Through Partial Support Recovery
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T21%3A57%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Measurement%20Rate-MSE%20Tradeoff%20for%20Compressive%20Sensing%20Through%20Partial%20Support%20Recovery&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Blasco-Serrano,%20Ricardo&rft.date=2014-09-15&rft.volume=62&rft.issue=18&rft.spage=4643&rft.epage=4658&rft.pages=4643-4658&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2014.2321739&rft_dat=%3Cproquest_RIE%3E1567061410%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1565538327&rft_id=info:pmid/&rft_ieee_id=6810173&rfr_iscdi=true