A Measurement Rate-MSE Tradeoff for Compressive Sensing Through Partial Support Recovery
We consider the problem of estimating sparse vectors from noisy linear measurements in the high dimensionality regime. For a fixed number k of nonzero entries, we study the fundamental relationship between two relevant quantities: the measurement rate, which characterizes the asymptotic behavior of...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on signal processing 2014-09, Vol.62 (18), p.4643-4658 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4658 |
---|---|
container_issue | 18 |
container_start_page | 4643 |
container_title | IEEE transactions on signal processing |
container_volume | 62 |
creator | Blasco-Serrano, Ricardo Zachariah, Dave Sundman, Dennis Thobaben, Ragnar Skoglund, Mikael |
description | We consider the problem of estimating sparse vectors from noisy linear measurements in the high dimensionality regime. For a fixed number k of nonzero entries, we study the fundamental relationship between two relevant quantities: the measurement rate, which characterizes the asymptotic behavior of the dimensions of the measurement matrix in terms of the ratio m/log n (with m being the number of measurements and n the dimension of the sparse vector), and the estimation mean square error. First, we use an information-theoretic approach to derive sufficient conditions on the measurement rate to reliably recover a part of the support set that represents a certain fraction of the total vector power. Second, we characterize the mean square error of an estimator that uses partial support set information. Using these two parts, we derive a tradeoff between the measurement rate and the mean-square error. This tradeoff is achievable using a two-step approach: first support set recovery, and then estimation of the active components. Finally, for both deterministic and random vectors, we perform a numerical evaluation to verify the advantages of the methods based on partial support set recovery. |
doi_str_mv | 10.1109/TSP.2014.2321739 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_6810173</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6810173</ieee_id><sourcerecordid>1567061410</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-22fd57e1004137efa4f52d3df2bf039d4840b237b482e9256d938788f190f17f3</originalsourceid><addsrcrecordid>eNpd0U1LAzEQBuBFFPy8C14CXrxsnUmym91jqZ-gKLaKt5B2J-1qu1mTXcV_b0rFg6cM5JlhhjdJjhEGiFCeT8aPAw4oB1xwVKLcSvawlJiCVPl2rCETaVao191kP4Q3iFKW-V7yOmT3ZELvaUVNx55MR-n9-JJNvKnIWcus82zkVq2nEOpPYmNqQt3M2WThXT9fsEfju9os2bhvW-fjBJq5T_Lfh8mONctAR7_vQfJ8dTkZ3aR3D9e3o-FdOpMgu5RzW2WKEECiUGSNtBmvRGX51IIoK1lImHKhprLgVPIsr0pRqKKwWIJFZcVBkm7mhi9q-6lufb0y_ls7U-uL-mWonZ_r926h48ESZfRnG99699FT6PSqDjNaLk1Drg8as1xBjhIh0tN_9M31vonXrFWWiUJwFRVs1My7EDzZvxUQ9DoaHaPR62j0bzSx5WTTUhPRH88LhPgtfgBhpojH</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1565538327</pqid></control><display><type>article</type><title>A Measurement Rate-MSE Tradeoff for Compressive Sensing Through Partial Support Recovery</title><source>IEEE Electronic Library (IEL)</source><creator>Blasco-Serrano, Ricardo ; Zachariah, Dave ; Sundman, Dennis ; Thobaben, Ragnar ; Skoglund, Mikael</creator><creatorcontrib>Blasco-Serrano, Ricardo ; Zachariah, Dave ; Sundman, Dennis ; Thobaben, Ragnar ; Skoglund, Mikael</creatorcontrib><description>We consider the problem of estimating sparse vectors from noisy linear measurements in the high dimensionality regime. For a fixed number k of nonzero entries, we study the fundamental relationship between two relevant quantities: the measurement rate, which characterizes the asymptotic behavior of the dimensions of the measurement matrix in terms of the ratio m/log n (with m being the number of measurements and n the dimension of the sparse vector), and the estimation mean square error. First, we use an information-theoretic approach to derive sufficient conditions on the measurement rate to reliably recover a part of the support set that represents a certain fraction of the total vector power. Second, we characterize the mean square error of an estimator that uses partial support set information. Using these two parts, we derive a tradeoff between the measurement rate and the mean-square error. This tradeoff is achievable using a two-step approach: first support set recovery, and then estimation of the active components. Finally, for both deterministic and random vectors, we perform a numerical evaluation to verify the advantages of the methods based on partial support set recovery.</description><identifier>ISSN: 1053-587X</identifier><identifier>ISSN: 1941-0476</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2014.2321739</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Asymptotic properties ; Compressed sensing ; Compressive sensing ; Dimensional measurements ; Error analysis ; Errors ; Estimation ; Mathematical analysis ; Mean square errors ; Mean square values ; Measurement uncertainty ; MSE ; Noise ; performance tradeoff ; Pollution measurement ; Recovery ; Sparse matrices ; sparse signal ; support recovery ; Vectors ; Vectors (mathematics)</subject><ispartof>IEEE transactions on signal processing, 2014-09, Vol.62 (18), p.4643-4658</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c404t-22fd57e1004137efa4f52d3df2bf039d4840b237b482e9256d938788f190f17f3</citedby><cites>FETCH-LOGICAL-c404t-22fd57e1004137efa4f52d3df2bf039d4840b237b482e9256d938788f190f17f3</cites><orcidid>0000-0003-2186-9402</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6810173$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,550,776,780,792,881,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6810173$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-144414$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Blasco-Serrano, Ricardo</creatorcontrib><creatorcontrib>Zachariah, Dave</creatorcontrib><creatorcontrib>Sundman, Dennis</creatorcontrib><creatorcontrib>Thobaben, Ragnar</creatorcontrib><creatorcontrib>Skoglund, Mikael</creatorcontrib><title>A Measurement Rate-MSE Tradeoff for Compressive Sensing Through Partial Support Recovery</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>We consider the problem of estimating sparse vectors from noisy linear measurements in the high dimensionality regime. For a fixed number k of nonzero entries, we study the fundamental relationship between two relevant quantities: the measurement rate, which characterizes the asymptotic behavior of the dimensions of the measurement matrix in terms of the ratio m/log n (with m being the number of measurements and n the dimension of the sparse vector), and the estimation mean square error. First, we use an information-theoretic approach to derive sufficient conditions on the measurement rate to reliably recover a part of the support set that represents a certain fraction of the total vector power. Second, we characterize the mean square error of an estimator that uses partial support set information. Using these two parts, we derive a tradeoff between the measurement rate and the mean-square error. This tradeoff is achievable using a two-step approach: first support set recovery, and then estimation of the active components. Finally, for both deterministic and random vectors, we perform a numerical evaluation to verify the advantages of the methods based on partial support set recovery.</description><subject>Asymptotic properties</subject><subject>Compressed sensing</subject><subject>Compressive sensing</subject><subject>Dimensional measurements</subject><subject>Error analysis</subject><subject>Errors</subject><subject>Estimation</subject><subject>Mathematical analysis</subject><subject>Mean square errors</subject><subject>Mean square values</subject><subject>Measurement uncertainty</subject><subject>MSE</subject><subject>Noise</subject><subject>performance tradeoff</subject><subject>Pollution measurement</subject><subject>Recovery</subject><subject>Sparse matrices</subject><subject>sparse signal</subject><subject>support recovery</subject><subject>Vectors</subject><subject>Vectors (mathematics)</subject><issn>1053-587X</issn><issn>1941-0476</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>D8T</sourceid><recordid>eNpd0U1LAzEQBuBFFPy8C14CXrxsnUmym91jqZ-gKLaKt5B2J-1qu1mTXcV_b0rFg6cM5JlhhjdJjhEGiFCeT8aPAw4oB1xwVKLcSvawlJiCVPl2rCETaVao191kP4Q3iFKW-V7yOmT3ZELvaUVNx55MR-n9-JJNvKnIWcus82zkVq2nEOpPYmNqQt3M2WThXT9fsEfju9os2bhvW-fjBJq5T_Lfh8mONctAR7_vQfJ8dTkZ3aR3D9e3o-FdOpMgu5RzW2WKEECiUGSNtBmvRGX51IIoK1lImHKhprLgVPIsr0pRqKKwWIJFZcVBkm7mhi9q-6lufb0y_ls7U-uL-mWonZ_r926h48ESZfRnG99699FT6PSqDjNaLk1Drg8as1xBjhIh0tN_9M31vonXrFWWiUJwFRVs1My7EDzZvxUQ9DoaHaPR62j0bzSx5WTTUhPRH88LhPgtfgBhpojH</recordid><startdate>20140915</startdate><enddate>20140915</enddate><creator>Blasco-Serrano, Ricardo</creator><creator>Zachariah, Dave</creator><creator>Sundman, Dennis</creator><creator>Thobaben, Ragnar</creator><creator>Skoglund, Mikael</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope><scope>ADTPV</scope><scope>AFDQA</scope><scope>AOWAS</scope><scope>D8T</scope><scope>D8V</scope><scope>ZZAVC</scope><orcidid>https://orcid.org/0000-0003-2186-9402</orcidid></search><sort><creationdate>20140915</creationdate><title>A Measurement Rate-MSE Tradeoff for Compressive Sensing Through Partial Support Recovery</title><author>Blasco-Serrano, Ricardo ; Zachariah, Dave ; Sundman, Dennis ; Thobaben, Ragnar ; Skoglund, Mikael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-22fd57e1004137efa4f52d3df2bf039d4840b237b482e9256d938788f190f17f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Asymptotic properties</topic><topic>Compressed sensing</topic><topic>Compressive sensing</topic><topic>Dimensional measurements</topic><topic>Error analysis</topic><topic>Errors</topic><topic>Estimation</topic><topic>Mathematical analysis</topic><topic>Mean square errors</topic><topic>Mean square values</topic><topic>Measurement uncertainty</topic><topic>MSE</topic><topic>Noise</topic><topic>performance tradeoff</topic><topic>Pollution measurement</topic><topic>Recovery</topic><topic>Sparse matrices</topic><topic>sparse signal</topic><topic>support recovery</topic><topic>Vectors</topic><topic>Vectors (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Blasco-Serrano, Ricardo</creatorcontrib><creatorcontrib>Zachariah, Dave</creatorcontrib><creatorcontrib>Sundman, Dennis</creatorcontrib><creatorcontrib>Thobaben, Ragnar</creatorcontrib><creatorcontrib>Skoglund, Mikael</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>SwePub</collection><collection>SWEPUB Kungliga Tekniska Högskolan full text</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Kungliga Tekniska Högskolan</collection><collection>SwePub Articles full text</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Blasco-Serrano, Ricardo</au><au>Zachariah, Dave</au><au>Sundman, Dennis</au><au>Thobaben, Ragnar</au><au>Skoglund, Mikael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Measurement Rate-MSE Tradeoff for Compressive Sensing Through Partial Support Recovery</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2014-09-15</date><risdate>2014</risdate><volume>62</volume><issue>18</issue><spage>4643</spage><epage>4658</epage><pages>4643-4658</pages><issn>1053-587X</issn><issn>1941-0476</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>We consider the problem of estimating sparse vectors from noisy linear measurements in the high dimensionality regime. For a fixed number k of nonzero entries, we study the fundamental relationship between two relevant quantities: the measurement rate, which characterizes the asymptotic behavior of the dimensions of the measurement matrix in terms of the ratio m/log n (with m being the number of measurements and n the dimension of the sparse vector), and the estimation mean square error. First, we use an information-theoretic approach to derive sufficient conditions on the measurement rate to reliably recover a part of the support set that represents a certain fraction of the total vector power. Second, we characterize the mean square error of an estimator that uses partial support set information. Using these two parts, we derive a tradeoff between the measurement rate and the mean-square error. This tradeoff is achievable using a two-step approach: first support set recovery, and then estimation of the active components. Finally, for both deterministic and random vectors, we perform a numerical evaluation to verify the advantages of the methods based on partial support set recovery.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TSP.2014.2321739</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-2186-9402</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1053-587X |
ispartof | IEEE transactions on signal processing, 2014-09, Vol.62 (18), p.4643-4658 |
issn | 1053-587X 1941-0476 1941-0476 |
language | eng |
recordid | cdi_ieee_primary_6810173 |
source | IEEE Electronic Library (IEL) |
subjects | Asymptotic properties Compressed sensing Compressive sensing Dimensional measurements Error analysis Errors Estimation Mathematical analysis Mean square errors Mean square values Measurement uncertainty MSE Noise performance tradeoff Pollution measurement Recovery Sparse matrices sparse signal support recovery Vectors Vectors (mathematics) |
title | A Measurement Rate-MSE Tradeoff for Compressive Sensing Through Partial Support Recovery |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T21%3A57%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Measurement%20Rate-MSE%20Tradeoff%20for%20Compressive%20Sensing%20Through%20Partial%20Support%20Recovery&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Blasco-Serrano,%20Ricardo&rft.date=2014-09-15&rft.volume=62&rft.issue=18&rft.spage=4643&rft.epage=4658&rft.pages=4643-4658&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2014.2321739&rft_dat=%3Cproquest_RIE%3E1567061410%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1565538327&rft_id=info:pmid/&rft_ieee_id=6810173&rfr_iscdi=true |