An Unsupervised Feature Selection Framework for Social Media Data

The explosive usage of social media produces massive amount of unlabeled and high-dimensional data. Feature selection has been proven to be effective in dealing with high-dimensional data for efficient learning and data mining. Unsupervised feature selection remains a challenging task due to the abs...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on knowledge and data engineering 2014-12, Vol.26 (12), p.2914-2927
Hauptverfasser: Tang, Jiliang, Liu, Huan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The explosive usage of social media produces massive amount of unlabeled and high-dimensional data. Feature selection has been proven to be effective in dealing with high-dimensional data for efficient learning and data mining. Unsupervised feature selection remains a challenging task due to the absence of label information based on which feature relevance is often assessed. The unique characteristics of social media data further complicate the already challenging problem of unsupervised feature selection, e.g., social media data is inherently linked, which makes invalid the independent and identically distributed assumption, bringing about new challenges to unsupervised feature selection algorithms. In this paper, we investigate a novel problem of feature selection for social media data in an unsupervised scenario. In particular, we analyze the differences between social media data and traditional attribute-value data, investigate how the relations extracted from linked data can be exploited to help select relevant features, and propose a novel unsupervised feature selection framework, LUFS, for linked social media data. We systematically design and conduct systemic experiments to evaluate the proposed framework on data sets from real-world social media Web sites. The empirical study demonstrates the effectiveness and potential of our proposed framework.
ISSN:1041-4347
1558-2191
DOI:10.1109/TKDE.2014.2320728