Dynamic state estimation in power systems using Kalman filters

Dynamic state estimation of power systems is necessary for wide area control purposes. Among the states of synchronous machine, precise, accurate, and timely information about rotor angle and speed deviation can be useful to enhance power system reliability and stability. In this paper two popular n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Tebianian, Hamed, Jeyasurya, Benjamin
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5
container_issue
container_start_page 1
container_title
container_volume
creator Tebianian, Hamed
Jeyasurya, Benjamin
description Dynamic state estimation of power systems is necessary for wide area control purposes. Among the states of synchronous machine, precise, accurate, and timely information about rotor angle and speed deviation can be useful to enhance power system reliability and stability. In this paper two popular nonlinear estimation approaches: Extended Kalman Filter (EKF) and Unscented Kalman Filter (UKF) are used to estimate main states of a simple power system using high rate data provided by Phasor Measurement Unit (PMU). A case study using a simple power system model is presented to illustrate the effectiveness of proposed approaches.
doi_str_mv 10.1109/EPEC.2013.6802979
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6802979</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6802979</ieee_id><sourcerecordid>6802979</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-fbd0b81d9668781074ebd4c6972e91abb6afbc976392e2896795e43fdf20fc5e3</originalsourceid><addsrcrecordid>eNotj8tKxDAUQONCUMZ-gLjJD7TepG1u70aQWh84oAtdD0l7I5G2MzQR6d874KzO7nCOENcKCqWAbrv3ri00qLIwDWhCOhMZYaMqJAIFBi9EFuM3AChEVVdwKe4e1tlOoZcx2cSSYwqTTWE_yzDLw_6XFxnXmHiK8ieG-Uu-2nGys_RhTLzEK3Hu7Rg5O3EjPh-7j_Y53749vbT32zworFPu3QCuUQMZ0xx7ACt2Q9UbQs2krHPGetcTmpI064YMUs1V6Qevwfc1lxtx8-8NzLw7LMfIZd2dLss_K8tIRA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Dynamic state estimation in power systems using Kalman filters</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Tebianian, Hamed ; Jeyasurya, Benjamin</creator><creatorcontrib>Tebianian, Hamed ; Jeyasurya, Benjamin</creatorcontrib><description>Dynamic state estimation of power systems is necessary for wide area control purposes. Among the states of synchronous machine, precise, accurate, and timely information about rotor angle and speed deviation can be useful to enhance power system reliability and stability. In this paper two popular nonlinear estimation approaches: Extended Kalman Filter (EKF) and Unscented Kalman Filter (UKF) are used to estimate main states of a simple power system using high rate data provided by Phasor Measurement Unit (PMU). A case study using a simple power system model is presented to illustrate the effectiveness of proposed approaches.</description><identifier>EISBN: 9781479901067</identifier><identifier>EISBN: 1479901067</identifier><identifier>EISBN: 9781479901050</identifier><identifier>EISBN: 1479901059</identifier><identifier>DOI: 10.1109/EPEC.2013.6802979</identifier><language>eng</language><publisher>IEEE</publisher><subject>Equations ; Extended Kalman Filter ; Kalman filters ; Mathematical model ; Phasor measurement units ; Power system dynamics ; Power system stability ; Power system state estimation ; State estimation ; Unscented Kalman Filter</subject><ispartof>2013 IEEE Electrical Power &amp; Energy Conference, 2013, p.1-5</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6802979$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6802979$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tebianian, Hamed</creatorcontrib><creatorcontrib>Jeyasurya, Benjamin</creatorcontrib><title>Dynamic state estimation in power systems using Kalman filters</title><title>2013 IEEE Electrical Power &amp; Energy Conference</title><addtitle>EPEC</addtitle><description>Dynamic state estimation of power systems is necessary for wide area control purposes. Among the states of synchronous machine, precise, accurate, and timely information about rotor angle and speed deviation can be useful to enhance power system reliability and stability. In this paper two popular nonlinear estimation approaches: Extended Kalman Filter (EKF) and Unscented Kalman Filter (UKF) are used to estimate main states of a simple power system using high rate data provided by Phasor Measurement Unit (PMU). A case study using a simple power system model is presented to illustrate the effectiveness of proposed approaches.</description><subject>Equations</subject><subject>Extended Kalman Filter</subject><subject>Kalman filters</subject><subject>Mathematical model</subject><subject>Phasor measurement units</subject><subject>Power system dynamics</subject><subject>Power system stability</subject><subject>Power system state estimation</subject><subject>State estimation</subject><subject>Unscented Kalman Filter</subject><isbn>9781479901067</isbn><isbn>1479901067</isbn><isbn>9781479901050</isbn><isbn>1479901059</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj8tKxDAUQONCUMZ-gLjJD7TepG1u70aQWh84oAtdD0l7I5G2MzQR6d874KzO7nCOENcKCqWAbrv3ri00qLIwDWhCOhMZYaMqJAIFBi9EFuM3AChEVVdwKe4e1tlOoZcx2cSSYwqTTWE_yzDLw_6XFxnXmHiK8ieG-Uu-2nGys_RhTLzEK3Hu7Rg5O3EjPh-7j_Y53749vbT32zworFPu3QCuUQMZ0xx7ACt2Q9UbQs2krHPGetcTmpI064YMUs1V6Qevwfc1lxtx8-8NzLw7LMfIZd2dLss_K8tIRA</recordid><startdate>201308</startdate><enddate>201308</enddate><creator>Tebianian, Hamed</creator><creator>Jeyasurya, Benjamin</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201308</creationdate><title>Dynamic state estimation in power systems using Kalman filters</title><author>Tebianian, Hamed ; Jeyasurya, Benjamin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-fbd0b81d9668781074ebd4c6972e91abb6afbc976392e2896795e43fdf20fc5e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Equations</topic><topic>Extended Kalman Filter</topic><topic>Kalman filters</topic><topic>Mathematical model</topic><topic>Phasor measurement units</topic><topic>Power system dynamics</topic><topic>Power system stability</topic><topic>Power system state estimation</topic><topic>State estimation</topic><topic>Unscented Kalman Filter</topic><toplevel>online_resources</toplevel><creatorcontrib>Tebianian, Hamed</creatorcontrib><creatorcontrib>Jeyasurya, Benjamin</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tebianian, Hamed</au><au>Jeyasurya, Benjamin</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Dynamic state estimation in power systems using Kalman filters</atitle><btitle>2013 IEEE Electrical Power &amp; Energy Conference</btitle><stitle>EPEC</stitle><date>2013-08</date><risdate>2013</risdate><spage>1</spage><epage>5</epage><pages>1-5</pages><eisbn>9781479901067</eisbn><eisbn>1479901067</eisbn><eisbn>9781479901050</eisbn><eisbn>1479901059</eisbn><abstract>Dynamic state estimation of power systems is necessary for wide area control purposes. Among the states of synchronous machine, precise, accurate, and timely information about rotor angle and speed deviation can be useful to enhance power system reliability and stability. In this paper two popular nonlinear estimation approaches: Extended Kalman Filter (EKF) and Unscented Kalman Filter (UKF) are used to estimate main states of a simple power system using high rate data provided by Phasor Measurement Unit (PMU). A case study using a simple power system model is presented to illustrate the effectiveness of proposed approaches.</abstract><pub>IEEE</pub><doi>10.1109/EPEC.2013.6802979</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISBN: 9781479901067
ispartof 2013 IEEE Electrical Power & Energy Conference, 2013, p.1-5
issn
language eng
recordid cdi_ieee_primary_6802979
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Equations
Extended Kalman Filter
Kalman filters
Mathematical model
Phasor measurement units
Power system dynamics
Power system stability
Power system state estimation
State estimation
Unscented Kalman Filter
title Dynamic state estimation in power systems using Kalman filters
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T12%3A03%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Dynamic%20state%20estimation%20in%20power%20systems%20using%20Kalman%20filters&rft.btitle=2013%20IEEE%20Electrical%20Power%20&%20Energy%20Conference&rft.au=Tebianian,%20Hamed&rft.date=2013-08&rft.spage=1&rft.epage=5&rft.pages=1-5&rft_id=info:doi/10.1109/EPEC.2013.6802979&rft_dat=%3Cieee_6IE%3E6802979%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781479901067&rft.eisbn_list=1479901067&rft.eisbn_list=9781479901050&rft.eisbn_list=1479901059&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6802979&rfr_iscdi=true