A Digital Frequency Multiplication Technique for Energy Efficient Transmitters

A logic gate-based digital frequency multiplication technique for low-power frequency synthesis is presented. The proposed digital edge combining approach offers broadband operation with low-power and low-area advantages and is a promising candidate for low-power frequency synthesis in deep submicro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on very large scale integration (VLSI) systems 2015-04, Vol.23 (4), p.781-785
Hauptverfasser: Manikandan, R. R., Kumar, Abhishek, Amrutur, Bharadwaj
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 785
container_issue 4
container_start_page 781
container_title IEEE transactions on very large scale integration (VLSI) systems
container_volume 23
creator Manikandan, R. R.
Kumar, Abhishek
Amrutur, Bharadwaj
description A logic gate-based digital frequency multiplication technique for low-power frequency synthesis is presented. The proposed digital edge combining approach offers broadband operation with low-power and low-area advantages and is a promising candidate for low-power frequency synthesis in deep submicrometer CMOS technologies. Chip prototype of the proposed frequency multiplication-based 2.4-GHz binary frequency-shift-keying (BFSK)/amplitude shift keying (ASK) transmitter (TX) was fabricated in 0.13-μm CMOS technology. The TX achieves maximum data rates of 3 and 20 Mb/s for BFSK and ASK modulations, respectively, consuming a 14-mA current from 1.3 V supply voltage. The corresponding energy efficiencies of the TX are 3.6 nJ/bit for BFSK and 0.91 nJ/bit for ASK modulations.
doi_str_mv 10.1109/TVLSI.2014.2315232
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_6802434</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6802434</ieee_id><sourcerecordid>10_1109_TVLSI_2014_2315232</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-4265cc2204d57eb91d3bb0141df08f8fc5d50ee7e1e3c5675b7677bff003e7113</originalsourceid><addsrcrecordid>eNo9kM9OwzAMhyMEEmPwAnDJC3Q4_5r2OI1tTBpwoHCt2tQZQV03kuzQt6djE77Y0s-fZX2E3DOYMAb5Y_G5fl9NODA54YIpLvgFGTGldJIPdTnMkIok4wyuyU0I3zBsyhxG5HVKn9zGxaqlC48_B-xMT18ObXT71pkqul1HCzRfnRsyaneezjv0m57OrXXGYRdp4asubF2M6MMtubJVG_Du3MfkYzEvZs_J-m25mk3XiZGgYyJ5qozhHGSjNNY5a0RdDy-xxkJmM2tUowBRI0NhVKpVrVOta2sBBGrGxJjw013jdyF4tOXeu23l-5JBeTRS_hkpj0bKs5EBejhBDhH_gTQDLoUUv0uMXfU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Digital Frequency Multiplication Technique for Energy Efficient Transmitters</title><source>IEEE Electronic Library (IEL)</source><creator>Manikandan, R. R. ; Kumar, Abhishek ; Amrutur, Bharadwaj</creator><creatorcontrib>Manikandan, R. R. ; Kumar, Abhishek ; Amrutur, Bharadwaj</creatorcontrib><description>A logic gate-based digital frequency multiplication technique for low-power frequency synthesis is presented. The proposed digital edge combining approach offers broadband operation with low-power and low-area advantages and is a promising candidate for low-power frequency synthesis in deep submicrometer CMOS technologies. Chip prototype of the proposed frequency multiplication-based 2.4-GHz binary frequency-shift-keying (BFSK)/amplitude shift keying (ASK) transmitter (TX) was fabricated in 0.13-μm CMOS technology. The TX achieves maximum data rates of 3 and 20 Mb/s for BFSK and ASK modulations, respectively, consuming a 14-mA current from 1.3 V supply voltage. The corresponding energy efficiencies of the TX are 3.6 nJ/bit for BFSK and 0.91 nJ/bit for ASK modulations.</description><identifier>ISSN: 1063-8210</identifier><identifier>EISSN: 1557-9999</identifier><identifier>DOI: 10.1109/TVLSI.2014.2315232</identifier><identifier>CODEN: IEVSE9</identifier><language>eng</language><publisher>IEEE</publisher><subject>Amplitude shift keying ; Binary frequency-shift-keying (BFSK) transmitter (TX) ; class-D power amplifier (PA) ; energy efficient ; Frequency conversion ; frequency multiplication technique ; Frequency synthesizers ; Logic gates ; Phase locked loops ; Transistors ; Voltage-controlled oscillators</subject><ispartof>IEEE transactions on very large scale integration (VLSI) systems, 2015-04, Vol.23 (4), p.781-785</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-4265cc2204d57eb91d3bb0141df08f8fc5d50ee7e1e3c5675b7677bff003e7113</citedby><cites>FETCH-LOGICAL-c407t-4265cc2204d57eb91d3bb0141df08f8fc5d50ee7e1e3c5675b7677bff003e7113</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6802434$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6802434$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Manikandan, R. R.</creatorcontrib><creatorcontrib>Kumar, Abhishek</creatorcontrib><creatorcontrib>Amrutur, Bharadwaj</creatorcontrib><title>A Digital Frequency Multiplication Technique for Energy Efficient Transmitters</title><title>IEEE transactions on very large scale integration (VLSI) systems</title><addtitle>TVLSI</addtitle><description>A logic gate-based digital frequency multiplication technique for low-power frequency synthesis is presented. The proposed digital edge combining approach offers broadband operation with low-power and low-area advantages and is a promising candidate for low-power frequency synthesis in deep submicrometer CMOS technologies. Chip prototype of the proposed frequency multiplication-based 2.4-GHz binary frequency-shift-keying (BFSK)/amplitude shift keying (ASK) transmitter (TX) was fabricated in 0.13-μm CMOS technology. The TX achieves maximum data rates of 3 and 20 Mb/s for BFSK and ASK modulations, respectively, consuming a 14-mA current from 1.3 V supply voltage. The corresponding energy efficiencies of the TX are 3.6 nJ/bit for BFSK and 0.91 nJ/bit for ASK modulations.</description><subject>Amplitude shift keying</subject><subject>Binary frequency-shift-keying (BFSK) transmitter (TX)</subject><subject>class-D power amplifier (PA)</subject><subject>energy efficient</subject><subject>Frequency conversion</subject><subject>frequency multiplication technique</subject><subject>Frequency synthesizers</subject><subject>Logic gates</subject><subject>Phase locked loops</subject><subject>Transistors</subject><subject>Voltage-controlled oscillators</subject><issn>1063-8210</issn><issn>1557-9999</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM9OwzAMhyMEEmPwAnDJC3Q4_5r2OI1tTBpwoHCt2tQZQV03kuzQt6djE77Y0s-fZX2E3DOYMAb5Y_G5fl9NODA54YIpLvgFGTGldJIPdTnMkIok4wyuyU0I3zBsyhxG5HVKn9zGxaqlC48_B-xMT18ObXT71pkqul1HCzRfnRsyaneezjv0m57OrXXGYRdp4asubF2M6MMtubJVG_Du3MfkYzEvZs_J-m25mk3XiZGgYyJ5qozhHGSjNNY5a0RdDy-xxkJmM2tUowBRI0NhVKpVrVOta2sBBGrGxJjw013jdyF4tOXeu23l-5JBeTRS_hkpj0bKs5EBejhBDhH_gTQDLoUUv0uMXfU</recordid><startdate>20150401</startdate><enddate>20150401</enddate><creator>Manikandan, R. R.</creator><creator>Kumar, Abhishek</creator><creator>Amrutur, Bharadwaj</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20150401</creationdate><title>A Digital Frequency Multiplication Technique for Energy Efficient Transmitters</title><author>Manikandan, R. R. ; Kumar, Abhishek ; Amrutur, Bharadwaj</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-4265cc2204d57eb91d3bb0141df08f8fc5d50ee7e1e3c5675b7677bff003e7113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Amplitude shift keying</topic><topic>Binary frequency-shift-keying (BFSK) transmitter (TX)</topic><topic>class-D power amplifier (PA)</topic><topic>energy efficient</topic><topic>Frequency conversion</topic><topic>frequency multiplication technique</topic><topic>Frequency synthesizers</topic><topic>Logic gates</topic><topic>Phase locked loops</topic><topic>Transistors</topic><topic>Voltage-controlled oscillators</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Manikandan, R. R.</creatorcontrib><creatorcontrib>Kumar, Abhishek</creatorcontrib><creatorcontrib>Amrutur, Bharadwaj</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on very large scale integration (VLSI) systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Manikandan, R. R.</au><au>Kumar, Abhishek</au><au>Amrutur, Bharadwaj</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Digital Frequency Multiplication Technique for Energy Efficient Transmitters</atitle><jtitle>IEEE transactions on very large scale integration (VLSI) systems</jtitle><stitle>TVLSI</stitle><date>2015-04-01</date><risdate>2015</risdate><volume>23</volume><issue>4</issue><spage>781</spage><epage>785</epage><pages>781-785</pages><issn>1063-8210</issn><eissn>1557-9999</eissn><coden>IEVSE9</coden><abstract>A logic gate-based digital frequency multiplication technique for low-power frequency synthesis is presented. The proposed digital edge combining approach offers broadband operation with low-power and low-area advantages and is a promising candidate for low-power frequency synthesis in deep submicrometer CMOS technologies. Chip prototype of the proposed frequency multiplication-based 2.4-GHz binary frequency-shift-keying (BFSK)/amplitude shift keying (ASK) transmitter (TX) was fabricated in 0.13-μm CMOS technology. The TX achieves maximum data rates of 3 and 20 Mb/s for BFSK and ASK modulations, respectively, consuming a 14-mA current from 1.3 V supply voltage. The corresponding energy efficiencies of the TX are 3.6 nJ/bit for BFSK and 0.91 nJ/bit for ASK modulations.</abstract><pub>IEEE</pub><doi>10.1109/TVLSI.2014.2315232</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1063-8210
ispartof IEEE transactions on very large scale integration (VLSI) systems, 2015-04, Vol.23 (4), p.781-785
issn 1063-8210
1557-9999
language eng
recordid cdi_ieee_primary_6802434
source IEEE Electronic Library (IEL)
subjects Amplitude shift keying
Binary frequency-shift-keying (BFSK) transmitter (TX)
class-D power amplifier (PA)
energy efficient
Frequency conversion
frequency multiplication technique
Frequency synthesizers
Logic gates
Phase locked loops
Transistors
Voltage-controlled oscillators
title A Digital Frequency Multiplication Technique for Energy Efficient Transmitters
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T22%3A48%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Digital%20Frequency%20Multiplication%20Technique%20for%20Energy%20Efficient%20Transmitters&rft.jtitle=IEEE%20transactions%20on%20very%20large%20scale%20integration%20(VLSI)%20systems&rft.au=Manikandan,%20R.%20R.&rft.date=2015-04-01&rft.volume=23&rft.issue=4&rft.spage=781&rft.epage=785&rft.pages=781-785&rft.issn=1063-8210&rft.eissn=1557-9999&rft.coden=IEVSE9&rft_id=info:doi/10.1109/TVLSI.2014.2315232&rft_dat=%3Ccrossref_RIE%3E10_1109_TVLSI_2014_2315232%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6802434&rfr_iscdi=true