Application of Matched Statistical Filters for EarthCARE Cloud Doppler Products

This paper presents a method for filtering the random noise that affects spaceborne Doppler measurements of atmospheric velocities. The proposed method hinges on adaptive low-pass filters that apply to the measured pulse-pair correlation function. The parameters of the filters are found by optimizin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2014-11, Vol.52 (11), p.7297-7316
Hauptverfasser: Sy, Ousmane O., Tanelli, Simone, Kollias, Pavlos, Ohno, Yuichi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7316
container_issue 11
container_start_page 7297
container_title IEEE transactions on geoscience and remote sensing
container_volume 52
creator Sy, Ousmane O.
Tanelli, Simone
Kollias, Pavlos
Ohno, Yuichi
description This paper presents a method for filtering the random noise that affects spaceborne Doppler measurements of atmospheric velocities. The proposed method hinges on adaptive low-pass filters that apply to the measured pulse-pair correlation function. The parameters of the filters are found by optimizing the statistics of the velocity residue of the filter. The method is illustrated by simulations of the cloud-profiling radar of the future Earth Cloud, Aerosol and Radiation Explorer (EarthCARE) mission of the European Space Agency and the Japanese Space Exploration Agency. These simulations, which do not include strong convection, show the higher performance of the filters when compared with the traditional increase of the along-track integration length. The results obtained with the filters show that velocity accuracies of 0.48, 0.42, and 0.39 m · s -1 are achievable at PRF = {6.1, 7, 7.5} kHz, respectively, while preserving the initial 500-m sampling of the measured EarthCARE data. These results also show the potential benefits of avoiding excessive alongtrack integration, for postprocessing tasks such as dealiasing or the retrieval of the vertical distribution of the atmospheric velocity (e.g., longer than 5 km for cases consistent with the climatologies represented in this data set).
doi_str_mv 10.1109/TGRS.2014.2311031
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_6799241</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6799241</ieee_id><sourcerecordid>1816049405</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-f4af0e44fc13e712c3652cdcc578f910a058fe7be09de7ea1545ca19fc9c2c6c3</originalsourceid><addsrcrecordid>eNpdkE1LAzEQhoMoWD9-gHgJePGyNZNNdjfHUusHKJWq5xCzE7pl29Qke_Dfm9LiwdPAO887DA8hV8DGAEzdfTwu3secgRjzMgclHJERSNkUrBLimIwYqKrgjeKn5CzGFcukhHpE5pPttu-sSZ3fUO_oq0l2iS19TzmKKW96-tD1CUOkzgc6MyEtp5PFjE57P7T03uc-BvoWfDvYFC_IiTN9xMvDPCefD7OP6VPxMn98nk5eClvyKhVOGMdQCGehxBq4LSvJbWutrBungBkmG4f1FzLVYo0GpJDWgHJWWW4rW56T2_3dbfDfA8ak11202Pdmg36IGhqomFCCyYze_ENXfgib_J3OZyvGBFNlpmBP2eBjDOj0NnRrE340ML1TrHeK9U6xPijOnet9p0PEP76qleICyl_6tXcf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1546004093</pqid></control><display><type>article</type><title>Application of Matched Statistical Filters for EarthCARE Cloud Doppler Products</title><source>IEEE Electronic Library (IEL)</source><creator>Sy, Ousmane O. ; Tanelli, Simone ; Kollias, Pavlos ; Ohno, Yuichi</creator><creatorcontrib>Sy, Ousmane O. ; Tanelli, Simone ; Kollias, Pavlos ; Ohno, Yuichi</creatorcontrib><description>This paper presents a method for filtering the random noise that affects spaceborne Doppler measurements of atmospheric velocities. The proposed method hinges on adaptive low-pass filters that apply to the measured pulse-pair correlation function. The parameters of the filters are found by optimizing the statistics of the velocity residue of the filter. The method is illustrated by simulations of the cloud-profiling radar of the future Earth Cloud, Aerosol and Radiation Explorer (EarthCARE) mission of the European Space Agency and the Japanese Space Exploration Agency. These simulations, which do not include strong convection, show the higher performance of the filters when compared with the traditional increase of the along-track integration length. The results obtained with the filters show that velocity accuracies of 0.48, 0.42, and 0.39 m · s -1 are achievable at PRF = {6.1, 7, 7.5} kHz, respectively, while preserving the initial 500-m sampling of the measured EarthCARE data. These results also show the potential benefits of avoiding excessive alongtrack integration, for postprocessing tasks such as dealiasing or the retrieval of the vertical distribution of the atmospheric velocity (e.g., longer than 5 km for cases consistent with the climatologies represented in this data set).</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2014.2311031</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Atmospherics ; Clouds ; Correlation ; Doppler ; Doppler effect ; Doppler radar ; Entropy ; Extraterrestrial measurements ; Filtering ; matched filters ; pulse Doppler radar ; random noise ; Sampling ; Simulation ; Space exploration ; Spaceborne radar ; Statistics ; Velocity measurement</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2014-11, Vol.52 (11), p.7297-7316</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Nov 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-f4af0e44fc13e712c3652cdcc578f910a058fe7be09de7ea1545ca19fc9c2c6c3</citedby><cites>FETCH-LOGICAL-c326t-f4af0e44fc13e712c3652cdcc578f910a058fe7be09de7ea1545ca19fc9c2c6c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6799241$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6799241$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sy, Ousmane O.</creatorcontrib><creatorcontrib>Tanelli, Simone</creatorcontrib><creatorcontrib>Kollias, Pavlos</creatorcontrib><creatorcontrib>Ohno, Yuichi</creatorcontrib><title>Application of Matched Statistical Filters for EarthCARE Cloud Doppler Products</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>This paper presents a method for filtering the random noise that affects spaceborne Doppler measurements of atmospheric velocities. The proposed method hinges on adaptive low-pass filters that apply to the measured pulse-pair correlation function. The parameters of the filters are found by optimizing the statistics of the velocity residue of the filter. The method is illustrated by simulations of the cloud-profiling radar of the future Earth Cloud, Aerosol and Radiation Explorer (EarthCARE) mission of the European Space Agency and the Japanese Space Exploration Agency. These simulations, which do not include strong convection, show the higher performance of the filters when compared with the traditional increase of the along-track integration length. The results obtained with the filters show that velocity accuracies of 0.48, 0.42, and 0.39 m · s -1 are achievable at PRF = {6.1, 7, 7.5} kHz, respectively, while preserving the initial 500-m sampling of the measured EarthCARE data. These results also show the potential benefits of avoiding excessive alongtrack integration, for postprocessing tasks such as dealiasing or the retrieval of the vertical distribution of the atmospheric velocity (e.g., longer than 5 km for cases consistent with the climatologies represented in this data set).</description><subject>Atmospherics</subject><subject>Clouds</subject><subject>Correlation</subject><subject>Doppler</subject><subject>Doppler effect</subject><subject>Doppler radar</subject><subject>Entropy</subject><subject>Extraterrestrial measurements</subject><subject>Filtering</subject><subject>matched filters</subject><subject>pulse Doppler radar</subject><subject>random noise</subject><subject>Sampling</subject><subject>Simulation</subject><subject>Space exploration</subject><subject>Spaceborne radar</subject><subject>Statistics</subject><subject>Velocity measurement</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1LAzEQhoMoWD9-gHgJePGyNZNNdjfHUusHKJWq5xCzE7pl29Qke_Dfm9LiwdPAO887DA8hV8DGAEzdfTwu3secgRjzMgclHJERSNkUrBLimIwYqKrgjeKn5CzGFcukhHpE5pPttu-sSZ3fUO_oq0l2iS19TzmKKW96-tD1CUOkzgc6MyEtp5PFjE57P7T03uc-BvoWfDvYFC_IiTN9xMvDPCefD7OP6VPxMn98nk5eClvyKhVOGMdQCGehxBq4LSvJbWutrBungBkmG4f1FzLVYo0GpJDWgHJWWW4rW56T2_3dbfDfA8ak11202Pdmg36IGhqomFCCyYze_ENXfgib_J3OZyvGBFNlpmBP2eBjDOj0NnRrE340ML1TrHeK9U6xPijOnet9p0PEP76qleICyl_6tXcf</recordid><startdate>20141101</startdate><enddate>20141101</enddate><creator>Sy, Ousmane O.</creator><creator>Tanelli, Simone</creator><creator>Kollias, Pavlos</creator><creator>Ohno, Yuichi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>7SP</scope><scope>F28</scope></search><sort><creationdate>20141101</creationdate><title>Application of Matched Statistical Filters for EarthCARE Cloud Doppler Products</title><author>Sy, Ousmane O. ; Tanelli, Simone ; Kollias, Pavlos ; Ohno, Yuichi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-f4af0e44fc13e712c3652cdcc578f910a058fe7be09de7ea1545ca19fc9c2c6c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Atmospherics</topic><topic>Clouds</topic><topic>Correlation</topic><topic>Doppler</topic><topic>Doppler effect</topic><topic>Doppler radar</topic><topic>Entropy</topic><topic>Extraterrestrial measurements</topic><topic>Filtering</topic><topic>matched filters</topic><topic>pulse Doppler radar</topic><topic>random noise</topic><topic>Sampling</topic><topic>Simulation</topic><topic>Space exploration</topic><topic>Spaceborne radar</topic><topic>Statistics</topic><topic>Velocity measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sy, Ousmane O.</creatorcontrib><creatorcontrib>Tanelli, Simone</creatorcontrib><creatorcontrib>Kollias, Pavlos</creatorcontrib><creatorcontrib>Ohno, Yuichi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sy, Ousmane O.</au><au>Tanelli, Simone</au><au>Kollias, Pavlos</au><au>Ohno, Yuichi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of Matched Statistical Filters for EarthCARE Cloud Doppler Products</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2014-11-01</date><risdate>2014</risdate><volume>52</volume><issue>11</issue><spage>7297</spage><epage>7316</epage><pages>7297-7316</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>This paper presents a method for filtering the random noise that affects spaceborne Doppler measurements of atmospheric velocities. The proposed method hinges on adaptive low-pass filters that apply to the measured pulse-pair correlation function. The parameters of the filters are found by optimizing the statistics of the velocity residue of the filter. The method is illustrated by simulations of the cloud-profiling radar of the future Earth Cloud, Aerosol and Radiation Explorer (EarthCARE) mission of the European Space Agency and the Japanese Space Exploration Agency. These simulations, which do not include strong convection, show the higher performance of the filters when compared with the traditional increase of the along-track integration length. The results obtained with the filters show that velocity accuracies of 0.48, 0.42, and 0.39 m · s -1 are achievable at PRF = {6.1, 7, 7.5} kHz, respectively, while preserving the initial 500-m sampling of the measured EarthCARE data. These results also show the potential benefits of avoiding excessive alongtrack integration, for postprocessing tasks such as dealiasing or the retrieval of the vertical distribution of the atmospheric velocity (e.g., longer than 5 km for cases consistent with the climatologies represented in this data set).</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2014.2311031</doi><tpages>20</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2014-11, Vol.52 (11), p.7297-7316
issn 0196-2892
1558-0644
language eng
recordid cdi_ieee_primary_6799241
source IEEE Electronic Library (IEL)
subjects Atmospherics
Clouds
Correlation
Doppler
Doppler effect
Doppler radar
Entropy
Extraterrestrial measurements
Filtering
matched filters
pulse Doppler radar
random noise
Sampling
Simulation
Space exploration
Spaceborne radar
Statistics
Velocity measurement
title Application of Matched Statistical Filters for EarthCARE Cloud Doppler Products
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T00%3A15%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20Matched%20Statistical%20Filters%20for%20EarthCARE%20Cloud%20Doppler%20Products&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Sy,%20Ousmane%20O.&rft.date=2014-11-01&rft.volume=52&rft.issue=11&rft.spage=7297&rft.epage=7316&rft.pages=7297-7316&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2014.2311031&rft_dat=%3Cproquest_RIE%3E1816049405%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1546004093&rft_id=info:pmid/&rft_ieee_id=6799241&rfr_iscdi=true