Application of Matched Statistical Filters for EarthCARE Cloud Doppler Products
This paper presents a method for filtering the random noise that affects spaceborne Doppler measurements of atmospheric velocities. The proposed method hinges on adaptive low-pass filters that apply to the measured pulse-pair correlation function. The parameters of the filters are found by optimizin...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on geoscience and remote sensing 2014-11, Vol.52 (11), p.7297-7316 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7316 |
---|---|
container_issue | 11 |
container_start_page | 7297 |
container_title | IEEE transactions on geoscience and remote sensing |
container_volume | 52 |
creator | Sy, Ousmane O. Tanelli, Simone Kollias, Pavlos Ohno, Yuichi |
description | This paper presents a method for filtering the random noise that affects spaceborne Doppler measurements of atmospheric velocities. The proposed method hinges on adaptive low-pass filters that apply to the measured pulse-pair correlation function. The parameters of the filters are found by optimizing the statistics of the velocity residue of the filter. The method is illustrated by simulations of the cloud-profiling radar of the future Earth Cloud, Aerosol and Radiation Explorer (EarthCARE) mission of the European Space Agency and the Japanese Space Exploration Agency. These simulations, which do not include strong convection, show the higher performance of the filters when compared with the traditional increase of the along-track integration length. The results obtained with the filters show that velocity accuracies of 0.48, 0.42, and 0.39 m · s -1 are achievable at PRF = {6.1, 7, 7.5} kHz, respectively, while preserving the initial 500-m sampling of the measured EarthCARE data. These results also show the potential benefits of avoiding excessive alongtrack integration, for postprocessing tasks such as dealiasing or the retrieval of the vertical distribution of the atmospheric velocity (e.g., longer than 5 km for cases consistent with the climatologies represented in this data set). |
doi_str_mv | 10.1109/TGRS.2014.2311031 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_6799241</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6799241</ieee_id><sourcerecordid>1816049405</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-f4af0e44fc13e712c3652cdcc578f910a058fe7be09de7ea1545ca19fc9c2c6c3</originalsourceid><addsrcrecordid>eNpdkE1LAzEQhoMoWD9-gHgJePGyNZNNdjfHUusHKJWq5xCzE7pl29Qke_Dfm9LiwdPAO887DA8hV8DGAEzdfTwu3secgRjzMgclHJERSNkUrBLimIwYqKrgjeKn5CzGFcukhHpE5pPttu-sSZ3fUO_oq0l2iS19TzmKKW96-tD1CUOkzgc6MyEtp5PFjE57P7T03uc-BvoWfDvYFC_IiTN9xMvDPCefD7OP6VPxMn98nk5eClvyKhVOGMdQCGehxBq4LSvJbWutrBungBkmG4f1FzLVYo0GpJDWgHJWWW4rW56T2_3dbfDfA8ak11202Pdmg36IGhqomFCCyYze_ENXfgib_J3OZyvGBFNlpmBP2eBjDOj0NnRrE340ML1TrHeK9U6xPijOnet9p0PEP76qleICyl_6tXcf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1546004093</pqid></control><display><type>article</type><title>Application of Matched Statistical Filters for EarthCARE Cloud Doppler Products</title><source>IEEE Electronic Library (IEL)</source><creator>Sy, Ousmane O. ; Tanelli, Simone ; Kollias, Pavlos ; Ohno, Yuichi</creator><creatorcontrib>Sy, Ousmane O. ; Tanelli, Simone ; Kollias, Pavlos ; Ohno, Yuichi</creatorcontrib><description>This paper presents a method for filtering the random noise that affects spaceborne Doppler measurements of atmospheric velocities. The proposed method hinges on adaptive low-pass filters that apply to the measured pulse-pair correlation function. The parameters of the filters are found by optimizing the statistics of the velocity residue of the filter. The method is illustrated by simulations of the cloud-profiling radar of the future Earth Cloud, Aerosol and Radiation Explorer (EarthCARE) mission of the European Space Agency and the Japanese Space Exploration Agency. These simulations, which do not include strong convection, show the higher performance of the filters when compared with the traditional increase of the along-track integration length. The results obtained with the filters show that velocity accuracies of 0.48, 0.42, and 0.39 m · s -1 are achievable at PRF = {6.1, 7, 7.5} kHz, respectively, while preserving the initial 500-m sampling of the measured EarthCARE data. These results also show the potential benefits of avoiding excessive alongtrack integration, for postprocessing tasks such as dealiasing or the retrieval of the vertical distribution of the atmospheric velocity (e.g., longer than 5 km for cases consistent with the climatologies represented in this data set).</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2014.2311031</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Atmospherics ; Clouds ; Correlation ; Doppler ; Doppler effect ; Doppler radar ; Entropy ; Extraterrestrial measurements ; Filtering ; matched filters ; pulse Doppler radar ; random noise ; Sampling ; Simulation ; Space exploration ; Spaceborne radar ; Statistics ; Velocity measurement</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2014-11, Vol.52 (11), p.7297-7316</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Nov 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-f4af0e44fc13e712c3652cdcc578f910a058fe7be09de7ea1545ca19fc9c2c6c3</citedby><cites>FETCH-LOGICAL-c326t-f4af0e44fc13e712c3652cdcc578f910a058fe7be09de7ea1545ca19fc9c2c6c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6799241$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6799241$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sy, Ousmane O.</creatorcontrib><creatorcontrib>Tanelli, Simone</creatorcontrib><creatorcontrib>Kollias, Pavlos</creatorcontrib><creatorcontrib>Ohno, Yuichi</creatorcontrib><title>Application of Matched Statistical Filters for EarthCARE Cloud Doppler Products</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>This paper presents a method for filtering the random noise that affects spaceborne Doppler measurements of atmospheric velocities. The proposed method hinges on adaptive low-pass filters that apply to the measured pulse-pair correlation function. The parameters of the filters are found by optimizing the statistics of the velocity residue of the filter. The method is illustrated by simulations of the cloud-profiling radar of the future Earth Cloud, Aerosol and Radiation Explorer (EarthCARE) mission of the European Space Agency and the Japanese Space Exploration Agency. These simulations, which do not include strong convection, show the higher performance of the filters when compared with the traditional increase of the along-track integration length. The results obtained with the filters show that velocity accuracies of 0.48, 0.42, and 0.39 m · s -1 are achievable at PRF = {6.1, 7, 7.5} kHz, respectively, while preserving the initial 500-m sampling of the measured EarthCARE data. These results also show the potential benefits of avoiding excessive alongtrack integration, for postprocessing tasks such as dealiasing or the retrieval of the vertical distribution of the atmospheric velocity (e.g., longer than 5 km for cases consistent with the climatologies represented in this data set).</description><subject>Atmospherics</subject><subject>Clouds</subject><subject>Correlation</subject><subject>Doppler</subject><subject>Doppler effect</subject><subject>Doppler radar</subject><subject>Entropy</subject><subject>Extraterrestrial measurements</subject><subject>Filtering</subject><subject>matched filters</subject><subject>pulse Doppler radar</subject><subject>random noise</subject><subject>Sampling</subject><subject>Simulation</subject><subject>Space exploration</subject><subject>Spaceborne radar</subject><subject>Statistics</subject><subject>Velocity measurement</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1LAzEQhoMoWD9-gHgJePGyNZNNdjfHUusHKJWq5xCzE7pl29Qke_Dfm9LiwdPAO887DA8hV8DGAEzdfTwu3secgRjzMgclHJERSNkUrBLimIwYqKrgjeKn5CzGFcukhHpE5pPttu-sSZ3fUO_oq0l2iS19TzmKKW96-tD1CUOkzgc6MyEtp5PFjE57P7T03uc-BvoWfDvYFC_IiTN9xMvDPCefD7OP6VPxMn98nk5eClvyKhVOGMdQCGehxBq4LSvJbWutrBungBkmG4f1FzLVYo0GpJDWgHJWWW4rW56T2_3dbfDfA8ak11202Pdmg36IGhqomFCCyYze_ENXfgib_J3OZyvGBFNlpmBP2eBjDOj0NnRrE340ML1TrHeK9U6xPijOnet9p0PEP76qleICyl_6tXcf</recordid><startdate>20141101</startdate><enddate>20141101</enddate><creator>Sy, Ousmane O.</creator><creator>Tanelli, Simone</creator><creator>Kollias, Pavlos</creator><creator>Ohno, Yuichi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>7SP</scope><scope>F28</scope></search><sort><creationdate>20141101</creationdate><title>Application of Matched Statistical Filters for EarthCARE Cloud Doppler Products</title><author>Sy, Ousmane O. ; Tanelli, Simone ; Kollias, Pavlos ; Ohno, Yuichi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-f4af0e44fc13e712c3652cdcc578f910a058fe7be09de7ea1545ca19fc9c2c6c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Atmospherics</topic><topic>Clouds</topic><topic>Correlation</topic><topic>Doppler</topic><topic>Doppler effect</topic><topic>Doppler radar</topic><topic>Entropy</topic><topic>Extraterrestrial measurements</topic><topic>Filtering</topic><topic>matched filters</topic><topic>pulse Doppler radar</topic><topic>random noise</topic><topic>Sampling</topic><topic>Simulation</topic><topic>Space exploration</topic><topic>Spaceborne radar</topic><topic>Statistics</topic><topic>Velocity measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sy, Ousmane O.</creatorcontrib><creatorcontrib>Tanelli, Simone</creatorcontrib><creatorcontrib>Kollias, Pavlos</creatorcontrib><creatorcontrib>Ohno, Yuichi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Electronics & Communications Abstracts</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sy, Ousmane O.</au><au>Tanelli, Simone</au><au>Kollias, Pavlos</au><au>Ohno, Yuichi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of Matched Statistical Filters for EarthCARE Cloud Doppler Products</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2014-11-01</date><risdate>2014</risdate><volume>52</volume><issue>11</issue><spage>7297</spage><epage>7316</epage><pages>7297-7316</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>This paper presents a method for filtering the random noise that affects spaceborne Doppler measurements of atmospheric velocities. The proposed method hinges on adaptive low-pass filters that apply to the measured pulse-pair correlation function. The parameters of the filters are found by optimizing the statistics of the velocity residue of the filter. The method is illustrated by simulations of the cloud-profiling radar of the future Earth Cloud, Aerosol and Radiation Explorer (EarthCARE) mission of the European Space Agency and the Japanese Space Exploration Agency. These simulations, which do not include strong convection, show the higher performance of the filters when compared with the traditional increase of the along-track integration length. The results obtained with the filters show that velocity accuracies of 0.48, 0.42, and 0.39 m · s -1 are achievable at PRF = {6.1, 7, 7.5} kHz, respectively, while preserving the initial 500-m sampling of the measured EarthCARE data. These results also show the potential benefits of avoiding excessive alongtrack integration, for postprocessing tasks such as dealiasing or the retrieval of the vertical distribution of the atmospheric velocity (e.g., longer than 5 km for cases consistent with the climatologies represented in this data set).</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2014.2311031</doi><tpages>20</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0196-2892 |
ispartof | IEEE transactions on geoscience and remote sensing, 2014-11, Vol.52 (11), p.7297-7316 |
issn | 0196-2892 1558-0644 |
language | eng |
recordid | cdi_ieee_primary_6799241 |
source | IEEE Electronic Library (IEL) |
subjects | Atmospherics Clouds Correlation Doppler Doppler effect Doppler radar Entropy Extraterrestrial measurements Filtering matched filters pulse Doppler radar random noise Sampling Simulation Space exploration Spaceborne radar Statistics Velocity measurement |
title | Application of Matched Statistical Filters for EarthCARE Cloud Doppler Products |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T00%3A15%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20Matched%20Statistical%20Filters%20for%20EarthCARE%20Cloud%20Doppler%20Products&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Sy,%20Ousmane%20O.&rft.date=2014-11-01&rft.volume=52&rft.issue=11&rft.spage=7297&rft.epage=7316&rft.pages=7297-7316&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2014.2311031&rft_dat=%3Cproquest_RIE%3E1816049405%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1546004093&rft_id=info:pmid/&rft_ieee_id=6799241&rfr_iscdi=true |