Efficient design using fuzzy logic based regression models

With ever decreasing design cycles, it is important for designers to have techniques they can use to quickly and efficiently model new designs. From these models, package performance can be estimated and electrical, thermal, and mechanical considerations can be balanced. In this paper, we present a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on components, packaging, and manufacturing technology. Part A packaging, and manufacturing technology. Part A, 1998-03, Vol.21 (1), p.132-141
Hauptverfasser: Schaible, B., Yung-Chang Lee, Hong Xie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:With ever decreasing design cycles, it is important for designers to have techniques they can use to quickly and efficiently model new designs. From these models, package performance can be estimated and electrical, thermal, and mechanical considerations can be balanced. In this paper, we present a method of quickly investigating new design concepts based on knowledge of previously studied designs and knowledge of the differences between the new and old designs. This approach is useful when the difference between designs is simple and can be accurately modeled with fewer data. The use of less data equates to a savings of time and money. In the case studies presented, we establish two "base" models using two data sets of 40 points each, then we establish two additional models of similar processes using only five and seven points each. Here, the initial (base) designs and the design differences are modeled with fuzzy logic based regression models. Such fuzzy logic based regression models can be based on numerically or empirically obtained data and/or qualitative knowledge of the system to be modeled. Once established, these models have the advantage of offering very fast response times uncharacteristic of experimentation, prototyping, and numerical methods such as finite element, finite difference, or boundary element modeling.
ISSN:1070-9886
1558-3678
DOI:10.1109/95.679043