Adaptive Rectifier Driven by Power Intake Predictors for Wind Energy Harvesting Sensor Networks
This paper presents a power management technique for improving the efficiency of harvesting energy from air-flows in wireless sensor networks (WSNs) applications. The proposed architecture consists of a two-stage energy conversion circuit: an ac-dc converter followed by a dc-dc buck-boost regulator...
Gespeichert in:
Veröffentlicht in: | IEEE journal of emerging and selected topics in power electronics 2015-06, Vol.3 (2), p.471-482 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 482 |
---|---|
container_issue | 2 |
container_start_page | 471 |
container_title | IEEE journal of emerging and selected topics in power electronics |
container_volume | 3 |
creator | Porcarelli, Danilo Spenza, Dora Brunelli, Davide Cammarano, Alessandro Petrioli, Chiara Benini, Luca |
description | This paper presents a power management technique for improving the efficiency of harvesting energy from air-flows in wireless sensor networks (WSNs) applications. The proposed architecture consists of a two-stage energy conversion circuit: an ac-dc converter followed by a dc-dc buck-boost regulator with maximum power point tracking capability. The key feature of the proposed solution is the adaptive hybrid voltage rectifier, which exploits both passive and active topologies combined with power prediction algorithms. The adaptive converter significantly outperforms other solutions, increasing the efficiency between 10% and 30% with respect to the only passive and the only active topologies. To assess the performance of this approach in a real-life scenario, air-flow data have been collected by deploying WSN nodes interfaced with a wind microturbine in an underground tunnel of the Metro B1 line in Rome. It is shown that, using the adaptive ac-dc converter combined with power prediction algorithms, nodes deployed in the tunnel can harvest up to 22% more energy with respect to previous methods. Finally, it is shown that using power management techniques optimized for the specific scenario, the overall system overhead, in terms of average number of sampling performed per day by a node, is reduced of up to 93%. |
doi_str_mv | 10.1109/JESTPE.2014.2316527 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_6786346</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6786346</ieee_id><sourcerecordid>3931741031</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-a88e4b434e6dc60b5a68bbca2e607a09e714a7e5025e45e84b4cdac9b7cf38a93</originalsourceid><addsrcrecordid>eNo9kFFPwjAQxxujiQT5BLw08XnYrl3bPRKcgiFKBONj03U3MtAN2wHh21sywr3cXe7_v7v8EBpSMqKUpE9v2XK1yEYxoXwUMyqSWN6gXkyFioRUye21lvIeDbzfkBAqTlKpekiPC7NrqwPgT7BtVVbg8LMLfY3zE140x9DP6tZsAS8cFJVtG-dx2Tj8XdUFzmpw6xOeGncA31b1Gi-h9mH6Du2xcVv_gO5K8-NhcMl99PWSrSbTaP7xOpuM55HlRLWRUQp4zhkHUVhB8sQIlefWxCCINCQFSbmRkJA4AZ6AClpbGJvm0pZMmZT10WO3d-eav334RW-avavDSU1lkjKuGJdBxTqVdY33Dkq9c9WvcSdNiT7D1B1MfYapLzCDa9i5KgC4OgJbwbhg_9KvcaY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1759348347</pqid></control><display><type>article</type><title>Adaptive Rectifier Driven by Power Intake Predictors for Wind Energy Harvesting Sensor Networks</title><source>IEEE Electronic Library (IEL)</source><creator>Porcarelli, Danilo ; Spenza, Dora ; Brunelli, Davide ; Cammarano, Alessandro ; Petrioli, Chiara ; Benini, Luca</creator><creatorcontrib>Porcarelli, Danilo ; Spenza, Dora ; Brunelli, Davide ; Cammarano, Alessandro ; Petrioli, Chiara ; Benini, Luca</creatorcontrib><description>This paper presents a power management technique for improving the efficiency of harvesting energy from air-flows in wireless sensor networks (WSNs) applications. The proposed architecture consists of a two-stage energy conversion circuit: an ac-dc converter followed by a dc-dc buck-boost regulator with maximum power point tracking capability. The key feature of the proposed solution is the adaptive hybrid voltage rectifier, which exploits both passive and active topologies combined with power prediction algorithms. The adaptive converter significantly outperforms other solutions, increasing the efficiency between 10% and 30% with respect to the only passive and the only active topologies. To assess the performance of this approach in a real-life scenario, air-flow data have been collected by deploying WSN nodes interfaced with a wind microturbine in an underground tunnel of the Metro B1 line in Rome. It is shown that, using the adaptive ac-dc converter combined with power prediction algorithms, nodes deployed in the tunnel can harvest up to 22% more energy with respect to previous methods. Finally, it is shown that using power management techniques optimized for the specific scenario, the overall system overhead, in terms of average number of sampling performed per day by a node, is reduced of up to 93%.</description><identifier>ISSN: 2168-6777</identifier><identifier>EISSN: 2168-6785</identifier><identifier>DOI: 10.1109/JESTPE.2014.2316527</identifier><identifier>CODEN: IJESN2</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Bridge circuits ; MOSFET ; Schottky diodes ; Supercapacitors ; Topology ; Voltage measurement ; Wireless sensor networks</subject><ispartof>IEEE journal of emerging and selected topics in power electronics, 2015-06, Vol.3 (2), p.471-482</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-a88e4b434e6dc60b5a68bbca2e607a09e714a7e5025e45e84b4cdac9b7cf38a93</citedby><cites>FETCH-LOGICAL-c408t-a88e4b434e6dc60b5a68bbca2e607a09e714a7e5025e45e84b4cdac9b7cf38a93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6786346$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6786346$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Porcarelli, Danilo</creatorcontrib><creatorcontrib>Spenza, Dora</creatorcontrib><creatorcontrib>Brunelli, Davide</creatorcontrib><creatorcontrib>Cammarano, Alessandro</creatorcontrib><creatorcontrib>Petrioli, Chiara</creatorcontrib><creatorcontrib>Benini, Luca</creatorcontrib><title>Adaptive Rectifier Driven by Power Intake Predictors for Wind Energy Harvesting Sensor Networks</title><title>IEEE journal of emerging and selected topics in power electronics</title><addtitle>JESTPE</addtitle><description>This paper presents a power management technique for improving the efficiency of harvesting energy from air-flows in wireless sensor networks (WSNs) applications. The proposed architecture consists of a two-stage energy conversion circuit: an ac-dc converter followed by a dc-dc buck-boost regulator with maximum power point tracking capability. The key feature of the proposed solution is the adaptive hybrid voltage rectifier, which exploits both passive and active topologies combined with power prediction algorithms. The adaptive converter significantly outperforms other solutions, increasing the efficiency between 10% and 30% with respect to the only passive and the only active topologies. To assess the performance of this approach in a real-life scenario, air-flow data have been collected by deploying WSN nodes interfaced with a wind microturbine in an underground tunnel of the Metro B1 line in Rome. It is shown that, using the adaptive ac-dc converter combined with power prediction algorithms, nodes deployed in the tunnel can harvest up to 22% more energy with respect to previous methods. Finally, it is shown that using power management techniques optimized for the specific scenario, the overall system overhead, in terms of average number of sampling performed per day by a node, is reduced of up to 93%.</description><subject>Algorithms</subject><subject>Bridge circuits</subject><subject>MOSFET</subject><subject>Schottky diodes</subject><subject>Supercapacitors</subject><subject>Topology</subject><subject>Voltage measurement</subject><subject>Wireless sensor networks</subject><issn>2168-6777</issn><issn>2168-6785</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kFFPwjAQxxujiQT5BLw08XnYrl3bPRKcgiFKBONj03U3MtAN2wHh21sywr3cXe7_v7v8EBpSMqKUpE9v2XK1yEYxoXwUMyqSWN6gXkyFioRUye21lvIeDbzfkBAqTlKpekiPC7NrqwPgT7BtVVbg8LMLfY3zE140x9DP6tZsAS8cFJVtG-dx2Tj8XdUFzmpw6xOeGncA31b1Gi-h9mH6Du2xcVv_gO5K8-NhcMl99PWSrSbTaP7xOpuM55HlRLWRUQp4zhkHUVhB8sQIlefWxCCINCQFSbmRkJA4AZ6AClpbGJvm0pZMmZT10WO3d-eav334RW-avavDSU1lkjKuGJdBxTqVdY33Dkq9c9WvcSdNiT7D1B1MfYapLzCDa9i5KgC4OgJbwbhg_9KvcaY</recordid><startdate>20150601</startdate><enddate>20150601</enddate><creator>Porcarelli, Danilo</creator><creator>Spenza, Dora</creator><creator>Brunelli, Davide</creator><creator>Cammarano, Alessandro</creator><creator>Petrioli, Chiara</creator><creator>Benini, Luca</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20150601</creationdate><title>Adaptive Rectifier Driven by Power Intake Predictors for Wind Energy Harvesting Sensor Networks</title><author>Porcarelli, Danilo ; Spenza, Dora ; Brunelli, Davide ; Cammarano, Alessandro ; Petrioli, Chiara ; Benini, Luca</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-a88e4b434e6dc60b5a68bbca2e607a09e714a7e5025e45e84b4cdac9b7cf38a93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Bridge circuits</topic><topic>MOSFET</topic><topic>Schottky diodes</topic><topic>Supercapacitors</topic><topic>Topology</topic><topic>Voltage measurement</topic><topic>Wireless sensor networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Porcarelli, Danilo</creatorcontrib><creatorcontrib>Spenza, Dora</creatorcontrib><creatorcontrib>Brunelli, Davide</creatorcontrib><creatorcontrib>Cammarano, Alessandro</creatorcontrib><creatorcontrib>Petrioli, Chiara</creatorcontrib><creatorcontrib>Benini, Luca</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of emerging and selected topics in power electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Porcarelli, Danilo</au><au>Spenza, Dora</au><au>Brunelli, Davide</au><au>Cammarano, Alessandro</au><au>Petrioli, Chiara</au><au>Benini, Luca</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive Rectifier Driven by Power Intake Predictors for Wind Energy Harvesting Sensor Networks</atitle><jtitle>IEEE journal of emerging and selected topics in power electronics</jtitle><stitle>JESTPE</stitle><date>2015-06-01</date><risdate>2015</risdate><volume>3</volume><issue>2</issue><spage>471</spage><epage>482</epage><pages>471-482</pages><issn>2168-6777</issn><eissn>2168-6785</eissn><coden>IJESN2</coden><abstract>This paper presents a power management technique for improving the efficiency of harvesting energy from air-flows in wireless sensor networks (WSNs) applications. The proposed architecture consists of a two-stage energy conversion circuit: an ac-dc converter followed by a dc-dc buck-boost regulator with maximum power point tracking capability. The key feature of the proposed solution is the adaptive hybrid voltage rectifier, which exploits both passive and active topologies combined with power prediction algorithms. The adaptive converter significantly outperforms other solutions, increasing the efficiency between 10% and 30% with respect to the only passive and the only active topologies. To assess the performance of this approach in a real-life scenario, air-flow data have been collected by deploying WSN nodes interfaced with a wind microturbine in an underground tunnel of the Metro B1 line in Rome. It is shown that, using the adaptive ac-dc converter combined with power prediction algorithms, nodes deployed in the tunnel can harvest up to 22% more energy with respect to previous methods. Finally, it is shown that using power management techniques optimized for the specific scenario, the overall system overhead, in terms of average number of sampling performed per day by a node, is reduced of up to 93%.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JESTPE.2014.2316527</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2168-6777 |
ispartof | IEEE journal of emerging and selected topics in power electronics, 2015-06, Vol.3 (2), p.471-482 |
issn | 2168-6777 2168-6785 |
language | eng |
recordid | cdi_ieee_primary_6786346 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Bridge circuits MOSFET Schottky diodes Supercapacitors Topology Voltage measurement Wireless sensor networks |
title | Adaptive Rectifier Driven by Power Intake Predictors for Wind Energy Harvesting Sensor Networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T11%3A15%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20Rectifier%20Driven%20by%20Power%20Intake%20Predictors%20for%20Wind%20Energy%20Harvesting%20Sensor%20Networks&rft.jtitle=IEEE%20journal%20of%20emerging%20and%20selected%20topics%20in%20power%20electronics&rft.au=Porcarelli,%20Danilo&rft.date=2015-06-01&rft.volume=3&rft.issue=2&rft.spage=471&rft.epage=482&rft.pages=471-482&rft.issn=2168-6777&rft.eissn=2168-6785&rft.coden=IJESN2&rft_id=info:doi/10.1109/JESTPE.2014.2316527&rft_dat=%3Cproquest_RIE%3E3931741031%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1759348347&rft_id=info:pmid/&rft_ieee_id=6786346&rfr_iscdi=true |