Adaptive Rectifier Driven by Power Intake Predictors for Wind Energy Harvesting Sensor Networks

This paper presents a power management technique for improving the efficiency of harvesting energy from air-flows in wireless sensor networks (WSNs) applications. The proposed architecture consists of a two-stage energy conversion circuit: an ac-dc converter followed by a dc-dc buck-boost regulator...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of emerging and selected topics in power electronics 2015-06, Vol.3 (2), p.471-482
Hauptverfasser: Porcarelli, Danilo, Spenza, Dora, Brunelli, Davide, Cammarano, Alessandro, Petrioli, Chiara, Benini, Luca
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 482
container_issue 2
container_start_page 471
container_title IEEE journal of emerging and selected topics in power electronics
container_volume 3
creator Porcarelli, Danilo
Spenza, Dora
Brunelli, Davide
Cammarano, Alessandro
Petrioli, Chiara
Benini, Luca
description This paper presents a power management technique for improving the efficiency of harvesting energy from air-flows in wireless sensor networks (WSNs) applications. The proposed architecture consists of a two-stage energy conversion circuit: an ac-dc converter followed by a dc-dc buck-boost regulator with maximum power point tracking capability. The key feature of the proposed solution is the adaptive hybrid voltage rectifier, which exploits both passive and active topologies combined with power prediction algorithms. The adaptive converter significantly outperforms other solutions, increasing the efficiency between 10% and 30% with respect to the only passive and the only active topologies. To assess the performance of this approach in a real-life scenario, air-flow data have been collected by deploying WSN nodes interfaced with a wind microturbine in an underground tunnel of the Metro B1 line in Rome. It is shown that, using the adaptive ac-dc converter combined with power prediction algorithms, nodes deployed in the tunnel can harvest up to 22% more energy with respect to previous methods. Finally, it is shown that using power management techniques optimized for the specific scenario, the overall system overhead, in terms of average number of sampling performed per day by a node, is reduced of up to 93%.
doi_str_mv 10.1109/JESTPE.2014.2316527
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_6786346</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6786346</ieee_id><sourcerecordid>3931741031</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-a88e4b434e6dc60b5a68bbca2e607a09e714a7e5025e45e84b4cdac9b7cf38a93</originalsourceid><addsrcrecordid>eNo9kFFPwjAQxxujiQT5BLw08XnYrl3bPRKcgiFKBONj03U3MtAN2wHh21sywr3cXe7_v7v8EBpSMqKUpE9v2XK1yEYxoXwUMyqSWN6gXkyFioRUye21lvIeDbzfkBAqTlKpekiPC7NrqwPgT7BtVVbg8LMLfY3zE140x9DP6tZsAS8cFJVtG-dx2Tj8XdUFzmpw6xOeGncA31b1Gi-h9mH6Du2xcVv_gO5K8-NhcMl99PWSrSbTaP7xOpuM55HlRLWRUQp4zhkHUVhB8sQIlefWxCCINCQFSbmRkJA4AZ6AClpbGJvm0pZMmZT10WO3d-eav334RW-avavDSU1lkjKuGJdBxTqVdY33Dkq9c9WvcSdNiT7D1B1MfYapLzCDa9i5KgC4OgJbwbhg_9KvcaY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1759348347</pqid></control><display><type>article</type><title>Adaptive Rectifier Driven by Power Intake Predictors for Wind Energy Harvesting Sensor Networks</title><source>IEEE Electronic Library (IEL)</source><creator>Porcarelli, Danilo ; Spenza, Dora ; Brunelli, Davide ; Cammarano, Alessandro ; Petrioli, Chiara ; Benini, Luca</creator><creatorcontrib>Porcarelli, Danilo ; Spenza, Dora ; Brunelli, Davide ; Cammarano, Alessandro ; Petrioli, Chiara ; Benini, Luca</creatorcontrib><description>This paper presents a power management technique for improving the efficiency of harvesting energy from air-flows in wireless sensor networks (WSNs) applications. The proposed architecture consists of a two-stage energy conversion circuit: an ac-dc converter followed by a dc-dc buck-boost regulator with maximum power point tracking capability. The key feature of the proposed solution is the adaptive hybrid voltage rectifier, which exploits both passive and active topologies combined with power prediction algorithms. The adaptive converter significantly outperforms other solutions, increasing the efficiency between 10% and 30% with respect to the only passive and the only active topologies. To assess the performance of this approach in a real-life scenario, air-flow data have been collected by deploying WSN nodes interfaced with a wind microturbine in an underground tunnel of the Metro B1 line in Rome. It is shown that, using the adaptive ac-dc converter combined with power prediction algorithms, nodes deployed in the tunnel can harvest up to 22% more energy with respect to previous methods. Finally, it is shown that using power management techniques optimized for the specific scenario, the overall system overhead, in terms of average number of sampling performed per day by a node, is reduced of up to 93%.</description><identifier>ISSN: 2168-6777</identifier><identifier>EISSN: 2168-6785</identifier><identifier>DOI: 10.1109/JESTPE.2014.2316527</identifier><identifier>CODEN: IJESN2</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Bridge circuits ; MOSFET ; Schottky diodes ; Supercapacitors ; Topology ; Voltage measurement ; Wireless sensor networks</subject><ispartof>IEEE journal of emerging and selected topics in power electronics, 2015-06, Vol.3 (2), p.471-482</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-a88e4b434e6dc60b5a68bbca2e607a09e714a7e5025e45e84b4cdac9b7cf38a93</citedby><cites>FETCH-LOGICAL-c408t-a88e4b434e6dc60b5a68bbca2e607a09e714a7e5025e45e84b4cdac9b7cf38a93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6786346$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6786346$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Porcarelli, Danilo</creatorcontrib><creatorcontrib>Spenza, Dora</creatorcontrib><creatorcontrib>Brunelli, Davide</creatorcontrib><creatorcontrib>Cammarano, Alessandro</creatorcontrib><creatorcontrib>Petrioli, Chiara</creatorcontrib><creatorcontrib>Benini, Luca</creatorcontrib><title>Adaptive Rectifier Driven by Power Intake Predictors for Wind Energy Harvesting Sensor Networks</title><title>IEEE journal of emerging and selected topics in power electronics</title><addtitle>JESTPE</addtitle><description>This paper presents a power management technique for improving the efficiency of harvesting energy from air-flows in wireless sensor networks (WSNs) applications. The proposed architecture consists of a two-stage energy conversion circuit: an ac-dc converter followed by a dc-dc buck-boost regulator with maximum power point tracking capability. The key feature of the proposed solution is the adaptive hybrid voltage rectifier, which exploits both passive and active topologies combined with power prediction algorithms. The adaptive converter significantly outperforms other solutions, increasing the efficiency between 10% and 30% with respect to the only passive and the only active topologies. To assess the performance of this approach in a real-life scenario, air-flow data have been collected by deploying WSN nodes interfaced with a wind microturbine in an underground tunnel of the Metro B1 line in Rome. It is shown that, using the adaptive ac-dc converter combined with power prediction algorithms, nodes deployed in the tunnel can harvest up to 22% more energy with respect to previous methods. Finally, it is shown that using power management techniques optimized for the specific scenario, the overall system overhead, in terms of average number of sampling performed per day by a node, is reduced of up to 93%.</description><subject>Algorithms</subject><subject>Bridge circuits</subject><subject>MOSFET</subject><subject>Schottky diodes</subject><subject>Supercapacitors</subject><subject>Topology</subject><subject>Voltage measurement</subject><subject>Wireless sensor networks</subject><issn>2168-6777</issn><issn>2168-6785</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kFFPwjAQxxujiQT5BLw08XnYrl3bPRKcgiFKBONj03U3MtAN2wHh21sywr3cXe7_v7v8EBpSMqKUpE9v2XK1yEYxoXwUMyqSWN6gXkyFioRUye21lvIeDbzfkBAqTlKpekiPC7NrqwPgT7BtVVbg8LMLfY3zE140x9DP6tZsAS8cFJVtG-dx2Tj8XdUFzmpw6xOeGncA31b1Gi-h9mH6Du2xcVv_gO5K8-NhcMl99PWSrSbTaP7xOpuM55HlRLWRUQp4zhkHUVhB8sQIlefWxCCINCQFSbmRkJA4AZ6AClpbGJvm0pZMmZT10WO3d-eav334RW-avavDSU1lkjKuGJdBxTqVdY33Dkq9c9WvcSdNiT7D1B1MfYapLzCDa9i5KgC4OgJbwbhg_9KvcaY</recordid><startdate>20150601</startdate><enddate>20150601</enddate><creator>Porcarelli, Danilo</creator><creator>Spenza, Dora</creator><creator>Brunelli, Davide</creator><creator>Cammarano, Alessandro</creator><creator>Petrioli, Chiara</creator><creator>Benini, Luca</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20150601</creationdate><title>Adaptive Rectifier Driven by Power Intake Predictors for Wind Energy Harvesting Sensor Networks</title><author>Porcarelli, Danilo ; Spenza, Dora ; Brunelli, Davide ; Cammarano, Alessandro ; Petrioli, Chiara ; Benini, Luca</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-a88e4b434e6dc60b5a68bbca2e607a09e714a7e5025e45e84b4cdac9b7cf38a93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Bridge circuits</topic><topic>MOSFET</topic><topic>Schottky diodes</topic><topic>Supercapacitors</topic><topic>Topology</topic><topic>Voltage measurement</topic><topic>Wireless sensor networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Porcarelli, Danilo</creatorcontrib><creatorcontrib>Spenza, Dora</creatorcontrib><creatorcontrib>Brunelli, Davide</creatorcontrib><creatorcontrib>Cammarano, Alessandro</creatorcontrib><creatorcontrib>Petrioli, Chiara</creatorcontrib><creatorcontrib>Benini, Luca</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of emerging and selected topics in power electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Porcarelli, Danilo</au><au>Spenza, Dora</au><au>Brunelli, Davide</au><au>Cammarano, Alessandro</au><au>Petrioli, Chiara</au><au>Benini, Luca</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive Rectifier Driven by Power Intake Predictors for Wind Energy Harvesting Sensor Networks</atitle><jtitle>IEEE journal of emerging and selected topics in power electronics</jtitle><stitle>JESTPE</stitle><date>2015-06-01</date><risdate>2015</risdate><volume>3</volume><issue>2</issue><spage>471</spage><epage>482</epage><pages>471-482</pages><issn>2168-6777</issn><eissn>2168-6785</eissn><coden>IJESN2</coden><abstract>This paper presents a power management technique for improving the efficiency of harvesting energy from air-flows in wireless sensor networks (WSNs) applications. The proposed architecture consists of a two-stage energy conversion circuit: an ac-dc converter followed by a dc-dc buck-boost regulator with maximum power point tracking capability. The key feature of the proposed solution is the adaptive hybrid voltage rectifier, which exploits both passive and active topologies combined with power prediction algorithms. The adaptive converter significantly outperforms other solutions, increasing the efficiency between 10% and 30% with respect to the only passive and the only active topologies. To assess the performance of this approach in a real-life scenario, air-flow data have been collected by deploying WSN nodes interfaced with a wind microturbine in an underground tunnel of the Metro B1 line in Rome. It is shown that, using the adaptive ac-dc converter combined with power prediction algorithms, nodes deployed in the tunnel can harvest up to 22% more energy with respect to previous methods. Finally, it is shown that using power management techniques optimized for the specific scenario, the overall system overhead, in terms of average number of sampling performed per day by a node, is reduced of up to 93%.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JESTPE.2014.2316527</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2168-6777
ispartof IEEE journal of emerging and selected topics in power electronics, 2015-06, Vol.3 (2), p.471-482
issn 2168-6777
2168-6785
language eng
recordid cdi_ieee_primary_6786346
source IEEE Electronic Library (IEL)
subjects Algorithms
Bridge circuits
MOSFET
Schottky diodes
Supercapacitors
Topology
Voltage measurement
Wireless sensor networks
title Adaptive Rectifier Driven by Power Intake Predictors for Wind Energy Harvesting Sensor Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T11%3A15%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20Rectifier%20Driven%20by%20Power%20Intake%20Predictors%20for%20Wind%20Energy%20Harvesting%20Sensor%20Networks&rft.jtitle=IEEE%20journal%20of%20emerging%20and%20selected%20topics%20in%20power%20electronics&rft.au=Porcarelli,%20Danilo&rft.date=2015-06-01&rft.volume=3&rft.issue=2&rft.spage=471&rft.epage=482&rft.pages=471-482&rft.issn=2168-6777&rft.eissn=2168-6785&rft.coden=IJESN2&rft_id=info:doi/10.1109/JESTPE.2014.2316527&rft_dat=%3Cproquest_RIE%3E3931741031%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1759348347&rft_id=info:pmid/&rft_ieee_id=6786346&rfr_iscdi=true