Reliable Crowdsourcing for Multi-Class Labeling Using Coding Theory
Crowdsourcing systems often have crowd workers that perform unreliable work on the task they are assigned. In this paper, we propose the use of error-control codes and decoding algorithms to design crowdsourcing systems for reliable classification despite unreliable crowd workers. Coding theory base...
Gespeichert in:
Veröffentlicht in: | IEEE journal of selected topics in signal processing 2014-08, Vol.8 (4), p.667-679 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 679 |
---|---|
container_issue | 4 |
container_start_page | 667 |
container_title | IEEE journal of selected topics in signal processing |
container_volume | 8 |
creator | Vempaty, Aditya Varshney, Lav R. Varshney, Pramod K. |
description | Crowdsourcing systems often have crowd workers that perform unreliable work on the task they are assigned. In this paper, we propose the use of error-control codes and decoding algorithms to design crowdsourcing systems for reliable classification despite unreliable crowd workers. Coding theory based techniques also allow us to pose easy-to-answer binary questions to the crowd workers. We consider three different crowdsourcing models: systems with independent crowd workers, systems with peer-dependent reward schemes, and systems where workers have common sources of information. For each of these models, we analyze classification performance with the proposed coding-based scheme. We develop an ordering principle for the quality of crowds and describe how system performance changes with the quality of the crowd. We also show that pairing among workers and diversification of the questions help in improving system performance. We demonstrate the effectiveness of the proposed coding-based scheme using both simulated data and real datasets from Amazon Mechanical Turk, a crowdsourcing microtask platform. Results suggest that use of good codes may improve the performance of the crowdsourcing task over typical majority-voting approaches. |
doi_str_mv | 10.1109/JSTSP.2014.2316116 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_6784318</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6784318</ieee_id><sourcerecordid>1671505315</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-6a84dfd7cfeea6e58c05d14cd2b983f1509f20611865887a5772935e1feda513</originalsourceid><addsrcrecordid>eNpdkMtOwzAQRS0EEqXwA7CJxIZNisfvLFHEU0UgGtaWm9iQKq2L3Qj173FoxYLNzEhz7ujORegc8AQAF9dPs2r2OiEY2IRQEADiAI2gYJBjptjhMFOSM87pMTqJcYExlwLYCJVvtmvNvLNZGfx3E30f6nb1kTkfsue-27R52ZkYs6mZJzAt3uNQS98Mrfq0PmxP0ZEzXbRn-z5G1d1tVT7k05f7x_JmmteUqE0ujGKNa2TtrDXCclVj3gCrGzIvFHXAceEITt6V4EpJw6UkBeUWnG0MBzpGV7uz6-C_ehs3etnG2nadWVnfRw1CphucAk_o5T90kR5bJXMaOJOEKIpJosiOqoOPMVin16FdmrDVgPUQq_6NVQ-x6n2sSXSxE7XW2j-BkIpRUPQHxGdyag</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1547228302</pqid></control><display><type>article</type><title>Reliable Crowdsourcing for Multi-Class Labeling Using Coding Theory</title><source>IEEE Electronic Library (IEL)</source><creator>Vempaty, Aditya ; Varshney, Lav R. ; Varshney, Pramod K.</creator><creatorcontrib>Vempaty, Aditya ; Varshney, Lav R. ; Varshney, Pramod K.</creatorcontrib><description>Crowdsourcing systems often have crowd workers that perform unreliable work on the task they are assigned. In this paper, we propose the use of error-control codes and decoding algorithms to design crowdsourcing systems for reliable classification despite unreliable crowd workers. Coding theory based techniques also allow us to pose easy-to-answer binary questions to the crowd workers. We consider three different crowdsourcing models: systems with independent crowd workers, systems with peer-dependent reward schemes, and systems where workers have common sources of information. For each of these models, we analyze classification performance with the proposed coding-based scheme. We develop an ordering principle for the quality of crowds and describe how system performance changes with the quality of the crowd. We also show that pairing among workers and diversification of the questions help in improving system performance. We demonstrate the effectiveness of the proposed coding-based scheme using both simulated data and real datasets from Amazon Mechanical Turk, a crowdsourcing microtask platform. Results suggest that use of good codes may improve the performance of the crowdsourcing task over typical majority-voting approaches.</description><identifier>ISSN: 1932-4553</identifier><identifier>EISSN: 1941-0484</identifier><identifier>DOI: 10.1109/JSTSP.2014.2316116</identifier><identifier>CODEN: IJSTGY</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithm design and analysis ; Classification ; Coding ; Computer simulation ; Crowdsourcing ; Decoding ; Design engineering ; error-control codes ; Hamming distance ; multi-class labeling ; Nose ; Performance enhancement ; Platforms ; quality assurance ; Reliability ; Sensors ; Tasks ; Vectors</subject><ispartof>IEEE journal of selected topics in signal processing, 2014-08, Vol.8 (4), p.667-679</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Aug 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-6a84dfd7cfeea6e58c05d14cd2b983f1509f20611865887a5772935e1feda513</citedby><cites>FETCH-LOGICAL-c328t-6a84dfd7cfeea6e58c05d14cd2b983f1509f20611865887a5772935e1feda513</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6784318$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6784318$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Vempaty, Aditya</creatorcontrib><creatorcontrib>Varshney, Lav R.</creatorcontrib><creatorcontrib>Varshney, Pramod K.</creatorcontrib><title>Reliable Crowdsourcing for Multi-Class Labeling Using Coding Theory</title><title>IEEE journal of selected topics in signal processing</title><addtitle>JSTSP</addtitle><description>Crowdsourcing systems often have crowd workers that perform unreliable work on the task they are assigned. In this paper, we propose the use of error-control codes and decoding algorithms to design crowdsourcing systems for reliable classification despite unreliable crowd workers. Coding theory based techniques also allow us to pose easy-to-answer binary questions to the crowd workers. We consider three different crowdsourcing models: systems with independent crowd workers, systems with peer-dependent reward schemes, and systems where workers have common sources of information. For each of these models, we analyze classification performance with the proposed coding-based scheme. We develop an ordering principle for the quality of crowds and describe how system performance changes with the quality of the crowd. We also show that pairing among workers and diversification of the questions help in improving system performance. We demonstrate the effectiveness of the proposed coding-based scheme using both simulated data and real datasets from Amazon Mechanical Turk, a crowdsourcing microtask platform. Results suggest that use of good codes may improve the performance of the crowdsourcing task over typical majority-voting approaches.</description><subject>Algorithm design and analysis</subject><subject>Classification</subject><subject>Coding</subject><subject>Computer simulation</subject><subject>Crowdsourcing</subject><subject>Decoding</subject><subject>Design engineering</subject><subject>error-control codes</subject><subject>Hamming distance</subject><subject>multi-class labeling</subject><subject>Nose</subject><subject>Performance enhancement</subject><subject>Platforms</subject><subject>quality assurance</subject><subject>Reliability</subject><subject>Sensors</subject><subject>Tasks</subject><subject>Vectors</subject><issn>1932-4553</issn><issn>1941-0484</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkMtOwzAQRS0EEqXwA7CJxIZNisfvLFHEU0UgGtaWm9iQKq2L3Qj173FoxYLNzEhz7ujORegc8AQAF9dPs2r2OiEY2IRQEADiAI2gYJBjptjhMFOSM87pMTqJcYExlwLYCJVvtmvNvLNZGfx3E30f6nb1kTkfsue-27R52ZkYs6mZJzAt3uNQS98Mrfq0PmxP0ZEzXbRn-z5G1d1tVT7k05f7x_JmmteUqE0ujGKNa2TtrDXCclVj3gCrGzIvFHXAceEITt6V4EpJw6UkBeUWnG0MBzpGV7uz6-C_ehs3etnG2nadWVnfRw1CphucAk_o5T90kR5bJXMaOJOEKIpJosiOqoOPMVin16FdmrDVgPUQq_6NVQ-x6n2sSXSxE7XW2j-BkIpRUPQHxGdyag</recordid><startdate>20140801</startdate><enddate>20140801</enddate><creator>Vempaty, Aditya</creator><creator>Varshney, Lav R.</creator><creator>Varshney, Pramod K.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20140801</creationdate><title>Reliable Crowdsourcing for Multi-Class Labeling Using Coding Theory</title><author>Vempaty, Aditya ; Varshney, Lav R. ; Varshney, Pramod K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-6a84dfd7cfeea6e58c05d14cd2b983f1509f20611865887a5772935e1feda513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithm design and analysis</topic><topic>Classification</topic><topic>Coding</topic><topic>Computer simulation</topic><topic>Crowdsourcing</topic><topic>Decoding</topic><topic>Design engineering</topic><topic>error-control codes</topic><topic>Hamming distance</topic><topic>multi-class labeling</topic><topic>Nose</topic><topic>Performance enhancement</topic><topic>Platforms</topic><topic>quality assurance</topic><topic>Reliability</topic><topic>Sensors</topic><topic>Tasks</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vempaty, Aditya</creatorcontrib><creatorcontrib>Varshney, Lav R.</creatorcontrib><creatorcontrib>Varshney, Pramod K.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of selected topics in signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Vempaty, Aditya</au><au>Varshney, Lav R.</au><au>Varshney, Pramod K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reliable Crowdsourcing for Multi-Class Labeling Using Coding Theory</atitle><jtitle>IEEE journal of selected topics in signal processing</jtitle><stitle>JSTSP</stitle><date>2014-08-01</date><risdate>2014</risdate><volume>8</volume><issue>4</issue><spage>667</spage><epage>679</epage><pages>667-679</pages><issn>1932-4553</issn><eissn>1941-0484</eissn><coden>IJSTGY</coden><abstract>Crowdsourcing systems often have crowd workers that perform unreliable work on the task they are assigned. In this paper, we propose the use of error-control codes and decoding algorithms to design crowdsourcing systems for reliable classification despite unreliable crowd workers. Coding theory based techniques also allow us to pose easy-to-answer binary questions to the crowd workers. We consider three different crowdsourcing models: systems with independent crowd workers, systems with peer-dependent reward schemes, and systems where workers have common sources of information. For each of these models, we analyze classification performance with the proposed coding-based scheme. We develop an ordering principle for the quality of crowds and describe how system performance changes with the quality of the crowd. We also show that pairing among workers and diversification of the questions help in improving system performance. We demonstrate the effectiveness of the proposed coding-based scheme using both simulated data and real datasets from Amazon Mechanical Turk, a crowdsourcing microtask platform. Results suggest that use of good codes may improve the performance of the crowdsourcing task over typical majority-voting approaches.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSTSP.2014.2316116</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1932-4553 |
ispartof | IEEE journal of selected topics in signal processing, 2014-08, Vol.8 (4), p.667-679 |
issn | 1932-4553 1941-0484 |
language | eng |
recordid | cdi_ieee_primary_6784318 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithm design and analysis Classification Coding Computer simulation Crowdsourcing Decoding Design engineering error-control codes Hamming distance multi-class labeling Nose Performance enhancement Platforms quality assurance Reliability Sensors Tasks Vectors |
title | Reliable Crowdsourcing for Multi-Class Labeling Using Coding Theory |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T04%3A53%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reliable%20Crowdsourcing%20for%20Multi-Class%20Labeling%20Using%20Coding%20Theory&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20signal%20processing&rft.au=Vempaty,%20Aditya&rft.date=2014-08-01&rft.volume=8&rft.issue=4&rft.spage=667&rft.epage=679&rft.pages=667-679&rft.issn=1932-4553&rft.eissn=1941-0484&rft.coden=IJSTGY&rft_id=info:doi/10.1109/JSTSP.2014.2316116&rft_dat=%3Cproquest_RIE%3E1671505315%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1547228302&rft_id=info:pmid/&rft_ieee_id=6784318&rfr_iscdi=true |