Reliable Crowdsourcing for Multi-Class Labeling Using Coding Theory

Crowdsourcing systems often have crowd workers that perform unreliable work on the task they are assigned. In this paper, we propose the use of error-control codes and decoding algorithms to design crowdsourcing systems for reliable classification despite unreliable crowd workers. Coding theory base...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of selected topics in signal processing 2014-08, Vol.8 (4), p.667-679
Hauptverfasser: Vempaty, Aditya, Varshney, Lav R., Varshney, Pramod K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 679
container_issue 4
container_start_page 667
container_title IEEE journal of selected topics in signal processing
container_volume 8
creator Vempaty, Aditya
Varshney, Lav R.
Varshney, Pramod K.
description Crowdsourcing systems often have crowd workers that perform unreliable work on the task they are assigned. In this paper, we propose the use of error-control codes and decoding algorithms to design crowdsourcing systems for reliable classification despite unreliable crowd workers. Coding theory based techniques also allow us to pose easy-to-answer binary questions to the crowd workers. We consider three different crowdsourcing models: systems with independent crowd workers, systems with peer-dependent reward schemes, and systems where workers have common sources of information. For each of these models, we analyze classification performance with the proposed coding-based scheme. We develop an ordering principle for the quality of crowds and describe how system performance changes with the quality of the crowd. We also show that pairing among workers and diversification of the questions help in improving system performance. We demonstrate the effectiveness of the proposed coding-based scheme using both simulated data and real datasets from Amazon Mechanical Turk, a crowdsourcing microtask platform. Results suggest that use of good codes may improve the performance of the crowdsourcing task over typical majority-voting approaches.
doi_str_mv 10.1109/JSTSP.2014.2316116
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_6784318</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6784318</ieee_id><sourcerecordid>1671505315</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-6a84dfd7cfeea6e58c05d14cd2b983f1509f20611865887a5772935e1feda513</originalsourceid><addsrcrecordid>eNpdkMtOwzAQRS0EEqXwA7CJxIZNisfvLFHEU0UgGtaWm9iQKq2L3Qj173FoxYLNzEhz7ujORegc8AQAF9dPs2r2OiEY2IRQEADiAI2gYJBjptjhMFOSM87pMTqJcYExlwLYCJVvtmvNvLNZGfx3E30f6nb1kTkfsue-27R52ZkYs6mZJzAt3uNQS98Mrfq0PmxP0ZEzXbRn-z5G1d1tVT7k05f7x_JmmteUqE0ujGKNa2TtrDXCclVj3gCrGzIvFHXAceEITt6V4EpJw6UkBeUWnG0MBzpGV7uz6-C_ehs3etnG2nadWVnfRw1CphucAk_o5T90kR5bJXMaOJOEKIpJosiOqoOPMVin16FdmrDVgPUQq_6NVQ-x6n2sSXSxE7XW2j-BkIpRUPQHxGdyag</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1547228302</pqid></control><display><type>article</type><title>Reliable Crowdsourcing for Multi-Class Labeling Using Coding Theory</title><source>IEEE Electronic Library (IEL)</source><creator>Vempaty, Aditya ; Varshney, Lav R. ; Varshney, Pramod K.</creator><creatorcontrib>Vempaty, Aditya ; Varshney, Lav R. ; Varshney, Pramod K.</creatorcontrib><description>Crowdsourcing systems often have crowd workers that perform unreliable work on the task they are assigned. In this paper, we propose the use of error-control codes and decoding algorithms to design crowdsourcing systems for reliable classification despite unreliable crowd workers. Coding theory based techniques also allow us to pose easy-to-answer binary questions to the crowd workers. We consider three different crowdsourcing models: systems with independent crowd workers, systems with peer-dependent reward schemes, and systems where workers have common sources of information. For each of these models, we analyze classification performance with the proposed coding-based scheme. We develop an ordering principle for the quality of crowds and describe how system performance changes with the quality of the crowd. We also show that pairing among workers and diversification of the questions help in improving system performance. We demonstrate the effectiveness of the proposed coding-based scheme using both simulated data and real datasets from Amazon Mechanical Turk, a crowdsourcing microtask platform. Results suggest that use of good codes may improve the performance of the crowdsourcing task over typical majority-voting approaches.</description><identifier>ISSN: 1932-4553</identifier><identifier>EISSN: 1941-0484</identifier><identifier>DOI: 10.1109/JSTSP.2014.2316116</identifier><identifier>CODEN: IJSTGY</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithm design and analysis ; Classification ; Coding ; Computer simulation ; Crowdsourcing ; Decoding ; Design engineering ; error-control codes ; Hamming distance ; multi-class labeling ; Nose ; Performance enhancement ; Platforms ; quality assurance ; Reliability ; Sensors ; Tasks ; Vectors</subject><ispartof>IEEE journal of selected topics in signal processing, 2014-08, Vol.8 (4), p.667-679</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Aug 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-6a84dfd7cfeea6e58c05d14cd2b983f1509f20611865887a5772935e1feda513</citedby><cites>FETCH-LOGICAL-c328t-6a84dfd7cfeea6e58c05d14cd2b983f1509f20611865887a5772935e1feda513</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6784318$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6784318$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Vempaty, Aditya</creatorcontrib><creatorcontrib>Varshney, Lav R.</creatorcontrib><creatorcontrib>Varshney, Pramod K.</creatorcontrib><title>Reliable Crowdsourcing for Multi-Class Labeling Using Coding Theory</title><title>IEEE journal of selected topics in signal processing</title><addtitle>JSTSP</addtitle><description>Crowdsourcing systems often have crowd workers that perform unreliable work on the task they are assigned. In this paper, we propose the use of error-control codes and decoding algorithms to design crowdsourcing systems for reliable classification despite unreliable crowd workers. Coding theory based techniques also allow us to pose easy-to-answer binary questions to the crowd workers. We consider three different crowdsourcing models: systems with independent crowd workers, systems with peer-dependent reward schemes, and systems where workers have common sources of information. For each of these models, we analyze classification performance with the proposed coding-based scheme. We develop an ordering principle for the quality of crowds and describe how system performance changes with the quality of the crowd. We also show that pairing among workers and diversification of the questions help in improving system performance. We demonstrate the effectiveness of the proposed coding-based scheme using both simulated data and real datasets from Amazon Mechanical Turk, a crowdsourcing microtask platform. Results suggest that use of good codes may improve the performance of the crowdsourcing task over typical majority-voting approaches.</description><subject>Algorithm design and analysis</subject><subject>Classification</subject><subject>Coding</subject><subject>Computer simulation</subject><subject>Crowdsourcing</subject><subject>Decoding</subject><subject>Design engineering</subject><subject>error-control codes</subject><subject>Hamming distance</subject><subject>multi-class labeling</subject><subject>Nose</subject><subject>Performance enhancement</subject><subject>Platforms</subject><subject>quality assurance</subject><subject>Reliability</subject><subject>Sensors</subject><subject>Tasks</subject><subject>Vectors</subject><issn>1932-4553</issn><issn>1941-0484</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkMtOwzAQRS0EEqXwA7CJxIZNisfvLFHEU0UgGtaWm9iQKq2L3Qj173FoxYLNzEhz7ujORegc8AQAF9dPs2r2OiEY2IRQEADiAI2gYJBjptjhMFOSM87pMTqJcYExlwLYCJVvtmvNvLNZGfx3E30f6nb1kTkfsue-27R52ZkYs6mZJzAt3uNQS98Mrfq0PmxP0ZEzXbRn-z5G1d1tVT7k05f7x_JmmteUqE0ujGKNa2TtrDXCclVj3gCrGzIvFHXAceEITt6V4EpJw6UkBeUWnG0MBzpGV7uz6-C_ehs3etnG2nadWVnfRw1CphucAk_o5T90kR5bJXMaOJOEKIpJosiOqoOPMVin16FdmrDVgPUQq_6NVQ-x6n2sSXSxE7XW2j-BkIpRUPQHxGdyag</recordid><startdate>20140801</startdate><enddate>20140801</enddate><creator>Vempaty, Aditya</creator><creator>Varshney, Lav R.</creator><creator>Varshney, Pramod K.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20140801</creationdate><title>Reliable Crowdsourcing for Multi-Class Labeling Using Coding Theory</title><author>Vempaty, Aditya ; Varshney, Lav R. ; Varshney, Pramod K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-6a84dfd7cfeea6e58c05d14cd2b983f1509f20611865887a5772935e1feda513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithm design and analysis</topic><topic>Classification</topic><topic>Coding</topic><topic>Computer simulation</topic><topic>Crowdsourcing</topic><topic>Decoding</topic><topic>Design engineering</topic><topic>error-control codes</topic><topic>Hamming distance</topic><topic>multi-class labeling</topic><topic>Nose</topic><topic>Performance enhancement</topic><topic>Platforms</topic><topic>quality assurance</topic><topic>Reliability</topic><topic>Sensors</topic><topic>Tasks</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vempaty, Aditya</creatorcontrib><creatorcontrib>Varshney, Lav R.</creatorcontrib><creatorcontrib>Varshney, Pramod K.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of selected topics in signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Vempaty, Aditya</au><au>Varshney, Lav R.</au><au>Varshney, Pramod K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reliable Crowdsourcing for Multi-Class Labeling Using Coding Theory</atitle><jtitle>IEEE journal of selected topics in signal processing</jtitle><stitle>JSTSP</stitle><date>2014-08-01</date><risdate>2014</risdate><volume>8</volume><issue>4</issue><spage>667</spage><epage>679</epage><pages>667-679</pages><issn>1932-4553</issn><eissn>1941-0484</eissn><coden>IJSTGY</coden><abstract>Crowdsourcing systems often have crowd workers that perform unreliable work on the task they are assigned. In this paper, we propose the use of error-control codes and decoding algorithms to design crowdsourcing systems for reliable classification despite unreliable crowd workers. Coding theory based techniques also allow us to pose easy-to-answer binary questions to the crowd workers. We consider three different crowdsourcing models: systems with independent crowd workers, systems with peer-dependent reward schemes, and systems where workers have common sources of information. For each of these models, we analyze classification performance with the proposed coding-based scheme. We develop an ordering principle for the quality of crowds and describe how system performance changes with the quality of the crowd. We also show that pairing among workers and diversification of the questions help in improving system performance. We demonstrate the effectiveness of the proposed coding-based scheme using both simulated data and real datasets from Amazon Mechanical Turk, a crowdsourcing microtask platform. Results suggest that use of good codes may improve the performance of the crowdsourcing task over typical majority-voting approaches.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSTSP.2014.2316116</doi><tpages>13</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1932-4553
ispartof IEEE journal of selected topics in signal processing, 2014-08, Vol.8 (4), p.667-679
issn 1932-4553
1941-0484
language eng
recordid cdi_ieee_primary_6784318
source IEEE Electronic Library (IEL)
subjects Algorithm design and analysis
Classification
Coding
Computer simulation
Crowdsourcing
Decoding
Design engineering
error-control codes
Hamming distance
multi-class labeling
Nose
Performance enhancement
Platforms
quality assurance
Reliability
Sensors
Tasks
Vectors
title Reliable Crowdsourcing for Multi-Class Labeling Using Coding Theory
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T04%3A53%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reliable%20Crowdsourcing%20for%20Multi-Class%20Labeling%20Using%20Coding%20Theory&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20signal%20processing&rft.au=Vempaty,%20Aditya&rft.date=2014-08-01&rft.volume=8&rft.issue=4&rft.spage=667&rft.epage=679&rft.pages=667-679&rft.issn=1932-4553&rft.eissn=1941-0484&rft.coden=IJSTGY&rft_id=info:doi/10.1109/JSTSP.2014.2316116&rft_dat=%3Cproquest_RIE%3E1671505315%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1547228302&rft_id=info:pmid/&rft_ieee_id=6784318&rfr_iscdi=true