Hysteresis-Free Nanosecond Pulsed Electrical Characterization of Top-Gated Graphene Transistors

We measure top-gated graphene field-effect transistors (GFETs) with nanosecond-range pulsed gate and drain voltages. Due to high-κ dielectric or graphene imperfections, the drain current decreases by ~10% over timescales of ~10 μs, consistent with charge trapping mechanisms. The pulsed operation lea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on electron devices 2014-05, Vol.61 (5), p.1583-1589
Hauptverfasser: Carrion, Enrique A., Serov, Andrey Y., Islam, Sharnali, Behnam, Ashkan, Malik, Akshay, Feng Xiong, Bianchi, Massimiliano, Sordan, Roman, Pop, Eric
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1589
container_issue 5
container_start_page 1583
container_title IEEE transactions on electron devices
container_volume 61
creator Carrion, Enrique A.
Serov, Andrey Y.
Islam, Sharnali
Behnam, Ashkan
Malik, Akshay
Feng Xiong
Bianchi, Massimiliano
Sordan, Roman
Pop, Eric
description We measure top-gated graphene field-effect transistors (GFETs) with nanosecond-range pulsed gate and drain voltages. Due to high-κ dielectric or graphene imperfections, the drain current decreases by ~10% over timescales of ~10 μs, consistent with charge trapping mechanisms. The pulsed operation leads to hysteresis-free I-V characteristics that are studied with pulses as short as 75 and 150 ns at the drain and gate, respectively. The pulsed operation enables reliable extraction of GFET intrinsic transconductance and mobility values independent of sweep direction, which are up to a factor of two higher than those obtained from simple dc characterization. We also observe drain-bias-induced charge trapping effects at lateral fields greater than 0.1 V/μm. In addition, using modeling and capacitance-voltage measurements, we extract trap densities up to 1012 cm -2 in the top-gate dielectric (here Al 2 O 3 ). This study illustrates important timeand field-dependent imperfections of top-gated GFETs with high-κ dielectrics, which must be carefully considered for future developments of this technology.
doi_str_mv 10.1109/TED.2014.2309651
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_6783736</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6783736</ieee_id><sourcerecordid>3377124391</sourcerecordid><originalsourceid>FETCH-LOGICAL-c432t-8ac66c7601c8acca83c626d4a8843d7cef17832a69194ecd819338fb565cce8d3</originalsourceid><addsrcrecordid>eNpdkDFPwzAQRi0EEqWwI7FEYmFJsWPHsUdU2oJUAUOYLXO5qKnSONjJUH49rloxMN2d9L5Pp0fILaMzxqh-LBfPs4wyMcs41TJnZ2TC8rxItRTynEwoZSrVXPFLchXCNp5SiGxCzMs-DOgxNCFdesTkzXYuILiuSj7GNmCVLFqEwTdg22S-sd5C5JsfOzSuS1ydlK5PV3aI4MrbfoMdJqW3XSwcnA_X5KK2sebmNKfkc7ko5y_p-n31On9apyB4NqTKgpRQSMogrmAVB5nJSlilBK8KwJoVimdWaqYFQqWY5lzVX7nMAVBVfEoejr29d98jhsHsmgDYtrZDNwbDZJRDuRA6ovf_0K0bfRe_MywXudJUKBkpeqTAuxA81qb3zc76vWHUHIybaNwcjJuT8Ri5O0YaRPzDZXy84JL_ApwGfMQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1545890486</pqid></control><display><type>article</type><title>Hysteresis-Free Nanosecond Pulsed Electrical Characterization of Top-Gated Graphene Transistors</title><source>IEEE Electronic Library (IEL)</source><creator>Carrion, Enrique A. ; Serov, Andrey Y. ; Islam, Sharnali ; Behnam, Ashkan ; Malik, Akshay ; Feng Xiong ; Bianchi, Massimiliano ; Sordan, Roman ; Pop, Eric</creator><creatorcontrib>Carrion, Enrique A. ; Serov, Andrey Y. ; Islam, Sharnali ; Behnam, Ashkan ; Malik, Akshay ; Feng Xiong ; Bianchi, Massimiliano ; Sordan, Roman ; Pop, Eric</creatorcontrib><description>We measure top-gated graphene field-effect transistors (GFETs) with nanosecond-range pulsed gate and drain voltages. Due to high-κ dielectric or graphene imperfections, the drain current decreases by ~10% over timescales of ~10 μs, consistent with charge trapping mechanisms. The pulsed operation leads to hysteresis-free I-V characteristics that are studied with pulses as short as 75 and 150 ns at the drain and gate, respectively. The pulsed operation enables reliable extraction of GFET intrinsic transconductance and mobility values independent of sweep direction, which are up to a factor of two higher than those obtained from simple dc characterization. We also observe drain-bias-induced charge trapping effects at lateral fields greater than 0.1 V/μm. In addition, using modeling and capacitance-voltage measurements, we extract trap densities up to 1012 cm -2 in the top-gate dielectric (here Al 2 O 3 ). This study illustrates important timeand field-dependent imperfections of top-gated GFETs with high-κ dielectrics, which must be carefully considered for future developments of this technology.</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2014.2309651</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Charge ; Charge carrier processes ; Charge trapping ; Defects ; Dielectrics ; Drains ; field-effect transistors (FETs) ; Gates ; Graphene ; high-κ dielectric ; Hysteresis ; Logic gates ; mobility ; nanosecond pulsed measurements ; Nanostructure ; Pulse measurements ; Trapping ; Voltage measurement</subject><ispartof>IEEE transactions on electron devices, 2014-05, Vol.61 (5), p.1583-1589</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) May 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c432t-8ac66c7601c8acca83c626d4a8843d7cef17832a69194ecd819338fb565cce8d3</citedby><cites>FETCH-LOGICAL-c432t-8ac66c7601c8acca83c626d4a8843d7cef17832a69194ecd819338fb565cce8d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6783736$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,782,786,798,27933,27934,54767</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6783736$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Carrion, Enrique A.</creatorcontrib><creatorcontrib>Serov, Andrey Y.</creatorcontrib><creatorcontrib>Islam, Sharnali</creatorcontrib><creatorcontrib>Behnam, Ashkan</creatorcontrib><creatorcontrib>Malik, Akshay</creatorcontrib><creatorcontrib>Feng Xiong</creatorcontrib><creatorcontrib>Bianchi, Massimiliano</creatorcontrib><creatorcontrib>Sordan, Roman</creatorcontrib><creatorcontrib>Pop, Eric</creatorcontrib><title>Hysteresis-Free Nanosecond Pulsed Electrical Characterization of Top-Gated Graphene Transistors</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>We measure top-gated graphene field-effect transistors (GFETs) with nanosecond-range pulsed gate and drain voltages. Due to high-κ dielectric or graphene imperfections, the drain current decreases by ~10% over timescales of ~10 μs, consistent with charge trapping mechanisms. The pulsed operation leads to hysteresis-free I-V characteristics that are studied with pulses as short as 75 and 150 ns at the drain and gate, respectively. The pulsed operation enables reliable extraction of GFET intrinsic transconductance and mobility values independent of sweep direction, which are up to a factor of two higher than those obtained from simple dc characterization. We also observe drain-bias-induced charge trapping effects at lateral fields greater than 0.1 V/μm. In addition, using modeling and capacitance-voltage measurements, we extract trap densities up to 1012 cm -2 in the top-gate dielectric (here Al 2 O 3 ). This study illustrates important timeand field-dependent imperfections of top-gated GFETs with high-κ dielectrics, which must be carefully considered for future developments of this technology.</description><subject>Charge</subject><subject>Charge carrier processes</subject><subject>Charge trapping</subject><subject>Defects</subject><subject>Dielectrics</subject><subject>Drains</subject><subject>field-effect transistors (FETs)</subject><subject>Gates</subject><subject>Graphene</subject><subject>high-κ dielectric</subject><subject>Hysteresis</subject><subject>Logic gates</subject><subject>mobility</subject><subject>nanosecond pulsed measurements</subject><subject>Nanostructure</subject><subject>Pulse measurements</subject><subject>Trapping</subject><subject>Voltage measurement</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkDFPwzAQRi0EEqWwI7FEYmFJsWPHsUdU2oJUAUOYLXO5qKnSONjJUH49rloxMN2d9L5Pp0fILaMzxqh-LBfPs4wyMcs41TJnZ2TC8rxItRTynEwoZSrVXPFLchXCNp5SiGxCzMs-DOgxNCFdesTkzXYuILiuSj7GNmCVLFqEwTdg22S-sd5C5JsfOzSuS1ydlK5PV3aI4MrbfoMdJqW3XSwcnA_X5KK2sebmNKfkc7ko5y_p-n31On9apyB4NqTKgpRQSMogrmAVB5nJSlilBK8KwJoVimdWaqYFQqWY5lzVX7nMAVBVfEoejr29d98jhsHsmgDYtrZDNwbDZJRDuRA6ovf_0K0bfRe_MywXudJUKBkpeqTAuxA81qb3zc76vWHUHIybaNwcjJuT8Ri5O0YaRPzDZXy84JL_ApwGfMQ</recordid><startdate>20140501</startdate><enddate>20140501</enddate><creator>Carrion, Enrique A.</creator><creator>Serov, Andrey Y.</creator><creator>Islam, Sharnali</creator><creator>Behnam, Ashkan</creator><creator>Malik, Akshay</creator><creator>Feng Xiong</creator><creator>Bianchi, Massimiliano</creator><creator>Sordan, Roman</creator><creator>Pop, Eric</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>7QF</scope><scope>7U5</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope></search><sort><creationdate>20140501</creationdate><title>Hysteresis-Free Nanosecond Pulsed Electrical Characterization of Top-Gated Graphene Transistors</title><author>Carrion, Enrique A. ; Serov, Andrey Y. ; Islam, Sharnali ; Behnam, Ashkan ; Malik, Akshay ; Feng Xiong ; Bianchi, Massimiliano ; Sordan, Roman ; Pop, Eric</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c432t-8ac66c7601c8acca83c626d4a8843d7cef17832a69194ecd819338fb565cce8d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Charge</topic><topic>Charge carrier processes</topic><topic>Charge trapping</topic><topic>Defects</topic><topic>Dielectrics</topic><topic>Drains</topic><topic>field-effect transistors (FETs)</topic><topic>Gates</topic><topic>Graphene</topic><topic>high-κ dielectric</topic><topic>Hysteresis</topic><topic>Logic gates</topic><topic>mobility</topic><topic>nanosecond pulsed measurements</topic><topic>Nanostructure</topic><topic>Pulse measurements</topic><topic>Trapping</topic><topic>Voltage measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carrion, Enrique A.</creatorcontrib><creatorcontrib>Serov, Andrey Y.</creatorcontrib><creatorcontrib>Islam, Sharnali</creatorcontrib><creatorcontrib>Behnam, Ashkan</creatorcontrib><creatorcontrib>Malik, Akshay</creatorcontrib><creatorcontrib>Feng Xiong</creatorcontrib><creatorcontrib>Bianchi, Massimiliano</creatorcontrib><creatorcontrib>Sordan, Roman</creatorcontrib><creatorcontrib>Pop, Eric</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Aluminium Industry Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Carrion, Enrique A.</au><au>Serov, Andrey Y.</au><au>Islam, Sharnali</au><au>Behnam, Ashkan</au><au>Malik, Akshay</au><au>Feng Xiong</au><au>Bianchi, Massimiliano</au><au>Sordan, Roman</au><au>Pop, Eric</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hysteresis-Free Nanosecond Pulsed Electrical Characterization of Top-Gated Graphene Transistors</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2014-05-01</date><risdate>2014</risdate><volume>61</volume><issue>5</issue><spage>1583</spage><epage>1589</epage><pages>1583-1589</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>We measure top-gated graphene field-effect transistors (GFETs) with nanosecond-range pulsed gate and drain voltages. Due to high-κ dielectric or graphene imperfections, the drain current decreases by ~10% over timescales of ~10 μs, consistent with charge trapping mechanisms. The pulsed operation leads to hysteresis-free I-V characteristics that are studied with pulses as short as 75 and 150 ns at the drain and gate, respectively. The pulsed operation enables reliable extraction of GFET intrinsic transconductance and mobility values independent of sweep direction, which are up to a factor of two higher than those obtained from simple dc characterization. We also observe drain-bias-induced charge trapping effects at lateral fields greater than 0.1 V/μm. In addition, using modeling and capacitance-voltage measurements, we extract trap densities up to 1012 cm -2 in the top-gate dielectric (here Al 2 O 3 ). This study illustrates important timeand field-dependent imperfections of top-gated GFETs with high-κ dielectrics, which must be carefully considered for future developments of this technology.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TED.2014.2309651</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9383
ispartof IEEE transactions on electron devices, 2014-05, Vol.61 (5), p.1583-1589
issn 0018-9383
1557-9646
language eng
recordid cdi_ieee_primary_6783736
source IEEE Electronic Library (IEL)
subjects Charge
Charge carrier processes
Charge trapping
Defects
Dielectrics
Drains
field-effect transistors (FETs)
Gates
Graphene
high-κ dielectric
Hysteresis
Logic gates
mobility
nanosecond pulsed measurements
Nanostructure
Pulse measurements
Trapping
Voltage measurement
title Hysteresis-Free Nanosecond Pulsed Electrical Characterization of Top-Gated Graphene Transistors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-01T05%3A30%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hysteresis-Free%20Nanosecond%20Pulsed%20Electrical%20Characterization%20of%20Top-Gated%20Graphene%20Transistors&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Carrion,%20Enrique%20A.&rft.date=2014-05-01&rft.volume=61&rft.issue=5&rft.spage=1583&rft.epage=1589&rft.pages=1583-1589&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2014.2309651&rft_dat=%3Cproquest_RIE%3E3377124391%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1545890486&rft_id=info:pmid/&rft_ieee_id=6783736&rfr_iscdi=true