MVS-based semi-supervised clustering

Semi-supervised clustering is a popular machine learning technique, used for challenge data categorization tasks, when some prior knowledge is available to users. In this paper, we report the empirical studies on our newly proposed semi-supervised clustering framework, which utilizes multiple viewpo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Yang Yan, Lihui Chen, Chee Keong Chan
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5
container_issue
container_start_page 1
container_title
container_volume
creator Yang Yan
Lihui Chen
Chee Keong Chan
description Semi-supervised clustering is a popular machine learning technique, used for challenge data categorization tasks, when some prior knowledge is available to users. In this paper, we report the empirical studies on our newly proposed semi-supervised clustering framework, which utilizes multiple viewpoints for the similarity measure, with the help of the prior knowledge. Two different MVS-based approaches are developed for knowledge given in either class labels or pair-wise constraints, namely LMVS and PMVS respectively. Extensive experimental studies performed on a few benchmark datasets demonstrate the effectiveness of the proposed methods. Comparisons are also made between LMVS and PMVS, together with a few well-known semi-supervised clustering algorithms.
doi_str_mv 10.1109/ICICS.2013.6782907
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6782907</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6782907</ieee_id><sourcerecordid>6782907</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-b99f9bc235a7ec86cc339e500899fc1d768ee6ba10a85faba1aaf5fcfc6b74613</originalsourceid><addsrcrecordid>eNotj01LAzEURdOF0Fr7B3Tjwm3G9_ImX0sZ1A5UXFS7LUn6IpFWyqQV_PdW7Orew4UDV4hrhAYR_H3f9d2yUYDUGOuUBzsSl9ha76ElorGY1foJAGitQgUTcfeyWsoYKm9uK--KrMc9D9_lj9P2WA88lK-PK3GRw7by7JxT8f70-NbN5eL1ue8eFrKg1QcZvc8-JkU6WE7OpETkWQO405BwY41jNjEgBKdzOJUQss4pJxNta5Cm4ubfW5h5vR_KLgw_6_MR-gWclz6w</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>MVS-based semi-supervised clustering</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Yang Yan ; Lihui Chen ; Chee Keong Chan</creator><creatorcontrib>Yang Yan ; Lihui Chen ; Chee Keong Chan</creatorcontrib><description>Semi-supervised clustering is a popular machine learning technique, used for challenge data categorization tasks, when some prior knowledge is available to users. In this paper, we report the empirical studies on our newly proposed semi-supervised clustering framework, which utilizes multiple viewpoints for the similarity measure, with the help of the prior knowledge. Two different MVS-based approaches are developed for knowledge given in either class labels or pair-wise constraints, namely LMVS and PMVS respectively. Extensive experimental studies performed on a few benchmark datasets demonstrate the effectiveness of the proposed methods. Comparisons are also made between LMVS and PMVS, together with a few well-known semi-supervised clustering algorithms.</description><identifier>EISBN: 1479904333</identifier><identifier>EISBN: 1479904341</identifier><identifier>EISBN: 9781479904341</identifier><identifier>EISBN: 9781479904334</identifier><identifier>DOI: 10.1109/ICICS.2013.6782907</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Benchmark testing ; class labels ; Clustering algorithms ; Clustering methods ; Educational institutions ; Measurement ; multi-viewpoint based similarity ; pair-wise constraint ; semi-supervised clustering ; Vectors</subject><ispartof>2013 9th International Conference on Information, Communications &amp; Signal Processing, 2013, p.1-5</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6782907$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54899</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6782907$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yang Yan</creatorcontrib><creatorcontrib>Lihui Chen</creatorcontrib><creatorcontrib>Chee Keong Chan</creatorcontrib><title>MVS-based semi-supervised clustering</title><title>2013 9th International Conference on Information, Communications &amp; Signal Processing</title><addtitle>ICICS</addtitle><description>Semi-supervised clustering is a popular machine learning technique, used for challenge data categorization tasks, when some prior knowledge is available to users. In this paper, we report the empirical studies on our newly proposed semi-supervised clustering framework, which utilizes multiple viewpoints for the similarity measure, with the help of the prior knowledge. Two different MVS-based approaches are developed for knowledge given in either class labels or pair-wise constraints, namely LMVS and PMVS respectively. Extensive experimental studies performed on a few benchmark datasets demonstrate the effectiveness of the proposed methods. Comparisons are also made between LMVS and PMVS, together with a few well-known semi-supervised clustering algorithms.</description><subject>Accuracy</subject><subject>Benchmark testing</subject><subject>class labels</subject><subject>Clustering algorithms</subject><subject>Clustering methods</subject><subject>Educational institutions</subject><subject>Measurement</subject><subject>multi-viewpoint based similarity</subject><subject>pair-wise constraint</subject><subject>semi-supervised clustering</subject><subject>Vectors</subject><isbn>1479904333</isbn><isbn>1479904341</isbn><isbn>9781479904341</isbn><isbn>9781479904334</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj01LAzEURdOF0Fr7B3Tjwm3G9_ImX0sZ1A5UXFS7LUn6IpFWyqQV_PdW7Orew4UDV4hrhAYR_H3f9d2yUYDUGOuUBzsSl9ha76ElorGY1foJAGitQgUTcfeyWsoYKm9uK--KrMc9D9_lj9P2WA88lK-PK3GRw7by7JxT8f70-NbN5eL1ue8eFrKg1QcZvc8-JkU6WE7OpETkWQO405BwY41jNjEgBKdzOJUQss4pJxNta5Cm4ubfW5h5vR_KLgw_6_MR-gWclz6w</recordid><startdate>201312</startdate><enddate>201312</enddate><creator>Yang Yan</creator><creator>Lihui Chen</creator><creator>Chee Keong Chan</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201312</creationdate><title>MVS-based semi-supervised clustering</title><author>Yang Yan ; Lihui Chen ; Chee Keong Chan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-b99f9bc235a7ec86cc339e500899fc1d768ee6ba10a85faba1aaf5fcfc6b74613</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Accuracy</topic><topic>Benchmark testing</topic><topic>class labels</topic><topic>Clustering algorithms</topic><topic>Clustering methods</topic><topic>Educational institutions</topic><topic>Measurement</topic><topic>multi-viewpoint based similarity</topic><topic>pair-wise constraint</topic><topic>semi-supervised clustering</topic><topic>Vectors</topic><toplevel>online_resources</toplevel><creatorcontrib>Yang Yan</creatorcontrib><creatorcontrib>Lihui Chen</creatorcontrib><creatorcontrib>Chee Keong Chan</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yang Yan</au><au>Lihui Chen</au><au>Chee Keong Chan</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>MVS-based semi-supervised clustering</atitle><btitle>2013 9th International Conference on Information, Communications &amp; Signal Processing</btitle><stitle>ICICS</stitle><date>2013-12</date><risdate>2013</risdate><spage>1</spage><epage>5</epage><pages>1-5</pages><eisbn>1479904333</eisbn><eisbn>1479904341</eisbn><eisbn>9781479904341</eisbn><eisbn>9781479904334</eisbn><abstract>Semi-supervised clustering is a popular machine learning technique, used for challenge data categorization tasks, when some prior knowledge is available to users. In this paper, we report the empirical studies on our newly proposed semi-supervised clustering framework, which utilizes multiple viewpoints for the similarity measure, with the help of the prior knowledge. Two different MVS-based approaches are developed for knowledge given in either class labels or pair-wise constraints, namely LMVS and PMVS respectively. Extensive experimental studies performed on a few benchmark datasets demonstrate the effectiveness of the proposed methods. Comparisons are also made between LMVS and PMVS, together with a few well-known semi-supervised clustering algorithms.</abstract><pub>IEEE</pub><doi>10.1109/ICICS.2013.6782907</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISBN: 1479904333
ispartof 2013 9th International Conference on Information, Communications & Signal Processing, 2013, p.1-5
issn
language eng
recordid cdi_ieee_primary_6782907
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Accuracy
Benchmark testing
class labels
Clustering algorithms
Clustering methods
Educational institutions
Measurement
multi-viewpoint based similarity
pair-wise constraint
semi-supervised clustering
Vectors
title MVS-based semi-supervised clustering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T02%3A39%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=MVS-based%20semi-supervised%20clustering&rft.btitle=2013%209th%20International%20Conference%20on%20Information,%20Communications%20&%20Signal%20Processing&rft.au=Yang%20Yan&rft.date=2013-12&rft.spage=1&rft.epage=5&rft.pages=1-5&rft_id=info:doi/10.1109/ICICS.2013.6782907&rft_dat=%3Cieee_6IE%3E6782907%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1479904333&rft.eisbn_list=1479904341&rft.eisbn_list=9781479904341&rft.eisbn_list=9781479904334&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6782907&rfr_iscdi=true