Detecting Image Spam Based on K-Labels Propagation Model

In order to detect image spam effectively, we propose a method based on a K-labels propagation model (KLPM) in this paper. Specifically, the speeded up robust features (SURF) of each image are extracted firstly. Then to standardize the features of each image, an improved means clustering algorithm i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Xiaoyan Qian, Weifeng Zhang, Yingzhou Zhang, Guoqiang Zhou, Ziyuan Wang
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 175
container_issue
container_start_page 170
container_title
container_volume
creator Xiaoyan Qian
Weifeng Zhang
Yingzhou Zhang
Guoqiang Zhou
Ziyuan Wang
description In order to detect image spam effectively, we propose a method based on a K-labels propagation model (KLPM) in this paper. Specifically, the speeded up robust features (SURF) of each image are extracted firstly. Then to standardize the features of each image, an improved means clustering algorithm is used to cluster these features and get the information of M cluster centers. Finally, after being labeled, all testing images are classified into spam images or ham images via the KLPM, which is based on a K-nearest neighbor (KNN) graph and a label propagating process. Experiments show that the precision of the proposed method can reach to 95%. Therefore, the method based on KLPM achieves a significant improvement in detecting Image Spam.
doi_str_mv 10.1109/WISA.2013.40
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6778631</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6778631</ieee_id><sourcerecordid>6778631</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-19b8dd1d8b0df51ab0cc2a4dc37a27d4ba10e8436ce4f6576613f23ff77596273</originalsourceid><addsrcrecordid>eNpVjD1PwzAUAI0QEqhkY2PxH0jwsx1_jKVAiUhVpIIYq5f4OQpKmijJwr8HCRam091wjN2AyACEv_soDutMClCZFmcs8daBtt4rCR7O_7nTlyyZ508hBEjInZBXzD3QQvXSnhpe9NgQP4zY83ucKfDhxF_SEivqZv46DSM2uLQ_cTcE6q7ZRcRupuSPK_b-9Pi2eU7L_bbYrMu0BZsvKfjKhQDBVSLEHLASdS1Rh1pZlDboCkGQ08rUpKPJrTGgolQxWpt7I61asdvfb0tEx3Fqe5y-jsZaZxSobw1GRgg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Detecting Image Spam Based on K-Labels Propagation Model</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Xiaoyan Qian ; Weifeng Zhang ; Yingzhou Zhang ; Guoqiang Zhou ; Ziyuan Wang</creator><creatorcontrib>Xiaoyan Qian ; Weifeng Zhang ; Yingzhou Zhang ; Guoqiang Zhou ; Ziyuan Wang</creatorcontrib><description>In order to detect image spam effectively, we propose a method based on a K-labels propagation model (KLPM) in this paper. Specifically, the speeded up robust features (SURF) of each image are extracted firstly. Then to standardize the features of each image, an improved means clustering algorithm is used to cluster these features and get the information of M cluster centers. Finally, after being labeled, all testing images are classified into spam images or ham images via the KLPM, which is based on a K-nearest neighbor (KNN) graph and a label propagating process. Experiments show that the precision of the proposed method can reach to 95%. Therefore, the method based on KLPM achieves a significant improvement in detecting Image Spam.</description><identifier>ISBN: 9781479932184</identifier><identifier>ISBN: 1479932183</identifier><identifier>EISBN: 9781479932191</identifier><identifier>EISBN: 1479932191</identifier><identifier>DOI: 10.1109/WISA.2013.40</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Classification algorithms ; Clustering algorithms ; Feature extraction ; Image Spam ; Improved Means Clustering ; Indexes ; KLPM ; KNN ; label propagation ; SURF ; Testing ; Unsolicited electronic mail</subject><ispartof>2013 10th Web Information System and Application Conference, 2013, p.170-175</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6778631$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6778631$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xiaoyan Qian</creatorcontrib><creatorcontrib>Weifeng Zhang</creatorcontrib><creatorcontrib>Yingzhou Zhang</creatorcontrib><creatorcontrib>Guoqiang Zhou</creatorcontrib><creatorcontrib>Ziyuan Wang</creatorcontrib><title>Detecting Image Spam Based on K-Labels Propagation Model</title><title>2013 10th Web Information System and Application Conference</title><addtitle>wisa</addtitle><description>In order to detect image spam effectively, we propose a method based on a K-labels propagation model (KLPM) in this paper. Specifically, the speeded up robust features (SURF) of each image are extracted firstly. Then to standardize the features of each image, an improved means clustering algorithm is used to cluster these features and get the information of M cluster centers. Finally, after being labeled, all testing images are classified into spam images or ham images via the KLPM, which is based on a K-nearest neighbor (KNN) graph and a label propagating process. Experiments show that the precision of the proposed method can reach to 95%. Therefore, the method based on KLPM achieves a significant improvement in detecting Image Spam.</description><subject>Accuracy</subject><subject>Classification algorithms</subject><subject>Clustering algorithms</subject><subject>Feature extraction</subject><subject>Image Spam</subject><subject>Improved Means Clustering</subject><subject>Indexes</subject><subject>KLPM</subject><subject>KNN</subject><subject>label propagation</subject><subject>SURF</subject><subject>Testing</subject><subject>Unsolicited electronic mail</subject><isbn>9781479932184</isbn><isbn>1479932183</isbn><isbn>9781479932191</isbn><isbn>1479932191</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVjD1PwzAUAI0QEqhkY2PxH0jwsx1_jKVAiUhVpIIYq5f4OQpKmijJwr8HCRam091wjN2AyACEv_soDutMClCZFmcs8daBtt4rCR7O_7nTlyyZ508hBEjInZBXzD3QQvXSnhpe9NgQP4zY83ucKfDhxF_SEivqZv46DSM2uLQ_cTcE6q7ZRcRupuSPK_b-9Pi2eU7L_bbYrMu0BZsvKfjKhQDBVSLEHLASdS1Rh1pZlDboCkGQ08rUpKPJrTGgolQxWpt7I61asdvfb0tEx3Fqe5y-jsZaZxSobw1GRgg</recordid><startdate>201311</startdate><enddate>201311</enddate><creator>Xiaoyan Qian</creator><creator>Weifeng Zhang</creator><creator>Yingzhou Zhang</creator><creator>Guoqiang Zhou</creator><creator>Ziyuan Wang</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201311</creationdate><title>Detecting Image Spam Based on K-Labels Propagation Model</title><author>Xiaoyan Qian ; Weifeng Zhang ; Yingzhou Zhang ; Guoqiang Zhou ; Ziyuan Wang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-19b8dd1d8b0df51ab0cc2a4dc37a27d4ba10e8436ce4f6576613f23ff77596273</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Accuracy</topic><topic>Classification algorithms</topic><topic>Clustering algorithms</topic><topic>Feature extraction</topic><topic>Image Spam</topic><topic>Improved Means Clustering</topic><topic>Indexes</topic><topic>KLPM</topic><topic>KNN</topic><topic>label propagation</topic><topic>SURF</topic><topic>Testing</topic><topic>Unsolicited electronic mail</topic><toplevel>online_resources</toplevel><creatorcontrib>Xiaoyan Qian</creatorcontrib><creatorcontrib>Weifeng Zhang</creatorcontrib><creatorcontrib>Yingzhou Zhang</creatorcontrib><creatorcontrib>Guoqiang Zhou</creatorcontrib><creatorcontrib>Ziyuan Wang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xiaoyan Qian</au><au>Weifeng Zhang</au><au>Yingzhou Zhang</au><au>Guoqiang Zhou</au><au>Ziyuan Wang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Detecting Image Spam Based on K-Labels Propagation Model</atitle><btitle>2013 10th Web Information System and Application Conference</btitle><stitle>wisa</stitle><date>2013-11</date><risdate>2013</risdate><spage>170</spage><epage>175</epage><pages>170-175</pages><isbn>9781479932184</isbn><isbn>1479932183</isbn><eisbn>9781479932191</eisbn><eisbn>1479932191</eisbn><coden>IEEPAD</coden><abstract>In order to detect image spam effectively, we propose a method based on a K-labels propagation model (KLPM) in this paper. Specifically, the speeded up robust features (SURF) of each image are extracted firstly. Then to standardize the features of each image, an improved means clustering algorithm is used to cluster these features and get the information of M cluster centers. Finally, after being labeled, all testing images are classified into spam images or ham images via the KLPM, which is based on a K-nearest neighbor (KNN) graph and a label propagating process. Experiments show that the precision of the proposed method can reach to 95%. Therefore, the method based on KLPM achieves a significant improvement in detecting Image Spam.</abstract><pub>IEEE</pub><doi>10.1109/WISA.2013.40</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781479932184
ispartof 2013 10th Web Information System and Application Conference, 2013, p.170-175
issn
language eng
recordid cdi_ieee_primary_6778631
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Accuracy
Classification algorithms
Clustering algorithms
Feature extraction
Image Spam
Improved Means Clustering
Indexes
KLPM
KNN
label propagation
SURF
Testing
Unsolicited electronic mail
title Detecting Image Spam Based on K-Labels Propagation Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T04%3A42%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Detecting%20Image%20Spam%20Based%20on%20K-Labels%20Propagation%20Model&rft.btitle=2013%2010th%20Web%20Information%20System%20and%20Application%20Conference&rft.au=Xiaoyan%20Qian&rft.date=2013-11&rft.spage=170&rft.epage=175&rft.pages=170-175&rft.isbn=9781479932184&rft.isbn_list=1479932183&rft.coden=IEEPAD&rft_id=info:doi/10.1109/WISA.2013.40&rft_dat=%3Cieee_6IE%3E6778631%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781479932191&rft.eisbn_list=1479932191&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6778631&rfr_iscdi=true