Evaluation of Atomic Layer Stacking Structure and Curie Temperature of Magnetic Films for Thermally Assisted Recording Media (Invited)

Thermally assisted recording system is a promising candidate to overcome the trilemma of perpendicular magnetic recording hard disk drive development. In this paper, we introduce our current research about evaluation for the media material. In-plane X-ray diffraction technique is effective to evalua...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on magnetics 2014-03, Vol.50 (3), p.102-106
Hauptverfasser: Saito, Shin, Hinata, Shintaro, Takahashi, Migaku
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 106
container_issue 3
container_start_page 102
container_title IEEE transactions on magnetics
container_volume 50
creator Saito, Shin
Hinata, Shintaro
Takahashi, Migaku
description Thermally assisted recording system is a promising candidate to overcome the trilemma of perpendicular magnetic recording hard disk drive development. In this paper, we introduce our current research about evaluation for the media material. In-plane X-ray diffraction technique is effective to evaluate atomic layer stacking structure of (111)-oriented face-centered cubic, c-plane-oriented hexagonal closed packed (hcp), and their intermediate structure with stacking faults of CoPt alloy thin film. Analytical results of Co50Pt50-based thin film shows that changing the valence electron number closer to 9 can effectively reduce the stacking fault. In practical, perfect hcp atomic layer stacking can be achieved by substituting Pt (group 10) with Rh (group 9). High-angle annular dark field of scanning transmission electron microscopy with probe diameter of 1 Å can effectively observe composition modulated atomic layer stacking with the super-lattice diffraction in Co-based alloy films. In practical, for Co80M20 (M: Ir, Pt) thin film sputtered under high substrate temperature, the irregular or alternately layered structure of M rich and M poor layer can be observed directly. To evaluate Curie temperature (TC), which is an important physical property of thermally assisted media, conduction electron spin-dependent scattering should be the focus. Fitting dielectric spectra for MnSb thin film with TC ~ 320 ° C measured with the ellipsometry and analyzing the Drude's term, temperature dependence of resistivity and scattering time at around TC was confirmed.
doi_str_mv 10.1109/TMAG.2013.2285286
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_6775002</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6775002</ieee_id><sourcerecordid>1677941706</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-3060557ece8880c0c3d1703dd238ca674aba1502ced244c032b4f1151f7ca7c63</originalsourceid><addsrcrecordid>eNpdkc9q3DAQxkVoIdu0DxB6EZRCevB2JMuWfFyWJA3sUmg3ZzGRx6lS_9lKdmBfIM9dubvk0JNGmt_3aZiPsUsBSyGg-rrbrm6XEkS-lNIU0pRnbCEqJTKAsnrDFgDCZJUq1Tl7F-NTuqpCwIK9XD9jO-Hoh54PDV-NQ-cd3-CBAv85ovvt-8dUhMmNUyCOfc3XU_DEd9TtKeC_1yTc4mNPY5Le-LaLvBkC3_2i0GHbHvgqRh9HqvkPckOoZ8st1R751V3_7FPjy3v2tsE20ofTecHub65362_Z5vvt3Xq1yZyScsxyKKEoNDkyxoADl9dCQ17XMjcOS63wAUUB0lEtlXKQywfVCFGIRjvUrswv2NXRdx-GPxPF0XY-Ompb7GmYohWl1mlrGmb003_o0zCFPk1n0xeV0JUu80SJI-XCEGOgxu6D7zAcrAA7J2PnZOycjD0lkzSfT84YHbZNwN75-CqURhlhwCTu45HzRPTaThMWADL_C-y8lss</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1509179763</pqid></control><display><type>article</type><title>Evaluation of Atomic Layer Stacking Structure and Curie Temperature of Magnetic Films for Thermally Assisted Recording Media (Invited)</title><source>IEEE Electronic Library (IEL)</source><creator>Saito, Shin ; Hinata, Shintaro ; Takahashi, Migaku</creator><creatorcontrib>Saito, Shin ; Hinata, Shintaro ; Takahashi, Migaku</creatorcontrib><description>Thermally assisted recording system is a promising candidate to overcome the trilemma of perpendicular magnetic recording hard disk drive development. In this paper, we introduce our current research about evaluation for the media material. In-plane X-ray diffraction technique is effective to evaluate atomic layer stacking structure of (111)-oriented face-centered cubic, c-plane-oriented hexagonal closed packed (hcp), and their intermediate structure with stacking faults of CoPt alloy thin film. Analytical results of Co50Pt50-based thin film shows that changing the valence electron number closer to 9 can effectively reduce the stacking fault. In practical, perfect hcp atomic layer stacking can be achieved by substituting Pt (group 10) with Rh (group 9). High-angle annular dark field of scanning transmission electron microscopy with probe diameter of 1 Å can effectively observe composition modulated atomic layer stacking with the super-lattice diffraction in Co-based alloy films. In practical, for Co80M20 (M: Ir, Pt) thin film sputtered under high substrate temperature, the irregular or alternately layered structure of M rich and M poor layer can be observed directly. To evaluate Curie temperature (TC), which is an important physical property of thermally assisted media, conduction electron spin-dependent scattering should be the focus. Fitting dielectric spectra for MnSb thin film with TC ~ 320 ° C measured with the ellipsometry and analyzing the Drude's term, temperature dependence of resistivity and scattering time at around TC was confirmed.</description><identifier>ISSN: 0018-9464</identifier><identifier>EISSN: 1941-0069</identifier><identifier>DOI: 10.1109/TMAG.2013.2285286</identifier><identifier>CODEN: IEMGAQ</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Atomic layer deposition ; Atomic structure ; Close packed lattices ; Cross-disciplinary physics: materials science; rheology ; Dielectric spectrum ; Diffraction ; Exact sciences and technology ; grazing-incidence in-plane X-ray diffraction (XRD) ; Hexagonal cells ; Magnetic recording ; Magnetism ; Materials ; Materials science ; Media ; Metals ; Other topics in materials science ; Physics ; Scattering ; Stacking ; stacking faults ; super-lattice diffraction ; Temperature measurement ; Thin films</subject><ispartof>IEEE transactions on magnetics, 2014-03, Vol.50 (3), p.102-106</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Mar 2014</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-3060557ece8880c0c3d1703dd238ca674aba1502ced244c032b4f1151f7ca7c63</citedby><cites>FETCH-LOGICAL-c422t-3060557ece8880c0c3d1703dd238ca674aba1502ced244c032b4f1151f7ca7c63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6775002$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,792,23910,23911,25119,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6775002$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28481808$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Saito, Shin</creatorcontrib><creatorcontrib>Hinata, Shintaro</creatorcontrib><creatorcontrib>Takahashi, Migaku</creatorcontrib><title>Evaluation of Atomic Layer Stacking Structure and Curie Temperature of Magnetic Films for Thermally Assisted Recording Media (Invited)</title><title>IEEE transactions on magnetics</title><addtitle>TMAG</addtitle><description>Thermally assisted recording system is a promising candidate to overcome the trilemma of perpendicular magnetic recording hard disk drive development. In this paper, we introduce our current research about evaluation for the media material. In-plane X-ray diffraction technique is effective to evaluate atomic layer stacking structure of (111)-oriented face-centered cubic, c-plane-oriented hexagonal closed packed (hcp), and their intermediate structure with stacking faults of CoPt alloy thin film. Analytical results of Co50Pt50-based thin film shows that changing the valence electron number closer to 9 can effectively reduce the stacking fault. In practical, perfect hcp atomic layer stacking can be achieved by substituting Pt (group 10) with Rh (group 9). High-angle annular dark field of scanning transmission electron microscopy with probe diameter of 1 Å can effectively observe composition modulated atomic layer stacking with the super-lattice diffraction in Co-based alloy films. In practical, for Co80M20 (M: Ir, Pt) thin film sputtered under high substrate temperature, the irregular or alternately layered structure of M rich and M poor layer can be observed directly. To evaluate Curie temperature (TC), which is an important physical property of thermally assisted media, conduction electron spin-dependent scattering should be the focus. Fitting dielectric spectra for MnSb thin film with TC ~ 320 ° C measured with the ellipsometry and analyzing the Drude's term, temperature dependence of resistivity and scattering time at around TC was confirmed.</description><subject>Atomic layer deposition</subject><subject>Atomic structure</subject><subject>Close packed lattices</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Dielectric spectrum</subject><subject>Diffraction</subject><subject>Exact sciences and technology</subject><subject>grazing-incidence in-plane X-ray diffraction (XRD)</subject><subject>Hexagonal cells</subject><subject>Magnetic recording</subject><subject>Magnetism</subject><subject>Materials</subject><subject>Materials science</subject><subject>Media</subject><subject>Metals</subject><subject>Other topics in materials science</subject><subject>Physics</subject><subject>Scattering</subject><subject>Stacking</subject><subject>stacking faults</subject><subject>super-lattice diffraction</subject><subject>Temperature measurement</subject><subject>Thin films</subject><issn>0018-9464</issn><issn>1941-0069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkc9q3DAQxkVoIdu0DxB6EZRCevB2JMuWfFyWJA3sUmg3ZzGRx6lS_9lKdmBfIM9dubvk0JNGmt_3aZiPsUsBSyGg-rrbrm6XEkS-lNIU0pRnbCEqJTKAsnrDFgDCZJUq1Tl7F-NTuqpCwIK9XD9jO-Hoh54PDV-NQ-cd3-CBAv85ovvt-8dUhMmNUyCOfc3XU_DEd9TtKeC_1yTc4mNPY5Le-LaLvBkC3_2i0GHbHvgqRh9HqvkPckOoZ8st1R751V3_7FPjy3v2tsE20ofTecHub65362_Z5vvt3Xq1yZyScsxyKKEoNDkyxoADl9dCQ17XMjcOS63wAUUB0lEtlXKQywfVCFGIRjvUrswv2NXRdx-GPxPF0XY-Ompb7GmYohWl1mlrGmb003_o0zCFPk1n0xeV0JUu80SJI-XCEGOgxu6D7zAcrAA7J2PnZOycjD0lkzSfT84YHbZNwN75-CqURhlhwCTu45HzRPTaThMWADL_C-y8lss</recordid><startdate>20140301</startdate><enddate>20140301</enddate><creator>Saito, Shin</creator><creator>Hinata, Shintaro</creator><creator>Takahashi, Migaku</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20140301</creationdate><title>Evaluation of Atomic Layer Stacking Structure and Curie Temperature of Magnetic Films for Thermally Assisted Recording Media (Invited)</title><author>Saito, Shin ; Hinata, Shintaro ; Takahashi, Migaku</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-3060557ece8880c0c3d1703dd238ca674aba1502ced244c032b4f1151f7ca7c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Atomic layer deposition</topic><topic>Atomic structure</topic><topic>Close packed lattices</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Dielectric spectrum</topic><topic>Diffraction</topic><topic>Exact sciences and technology</topic><topic>grazing-incidence in-plane X-ray diffraction (XRD)</topic><topic>Hexagonal cells</topic><topic>Magnetic recording</topic><topic>Magnetism</topic><topic>Materials</topic><topic>Materials science</topic><topic>Media</topic><topic>Metals</topic><topic>Other topics in materials science</topic><topic>Physics</topic><topic>Scattering</topic><topic>Stacking</topic><topic>stacking faults</topic><topic>super-lattice diffraction</topic><topic>Temperature measurement</topic><topic>Thin films</topic><toplevel>online_resources</toplevel><creatorcontrib>Saito, Shin</creatorcontrib><creatorcontrib>Hinata, Shintaro</creatorcontrib><creatorcontrib>Takahashi, Migaku</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on magnetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Saito, Shin</au><au>Hinata, Shintaro</au><au>Takahashi, Migaku</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluation of Atomic Layer Stacking Structure and Curie Temperature of Magnetic Films for Thermally Assisted Recording Media (Invited)</atitle><jtitle>IEEE transactions on magnetics</jtitle><stitle>TMAG</stitle><date>2014-03-01</date><risdate>2014</risdate><volume>50</volume><issue>3</issue><spage>102</spage><epage>106</epage><pages>102-106</pages><issn>0018-9464</issn><eissn>1941-0069</eissn><coden>IEMGAQ</coden><abstract>Thermally assisted recording system is a promising candidate to overcome the trilemma of perpendicular magnetic recording hard disk drive development. In this paper, we introduce our current research about evaluation for the media material. In-plane X-ray diffraction technique is effective to evaluate atomic layer stacking structure of (111)-oriented face-centered cubic, c-plane-oriented hexagonal closed packed (hcp), and their intermediate structure with stacking faults of CoPt alloy thin film. Analytical results of Co50Pt50-based thin film shows that changing the valence electron number closer to 9 can effectively reduce the stacking fault. In practical, perfect hcp atomic layer stacking can be achieved by substituting Pt (group 10) with Rh (group 9). High-angle annular dark field of scanning transmission electron microscopy with probe diameter of 1 Å can effectively observe composition modulated atomic layer stacking with the super-lattice diffraction in Co-based alloy films. In practical, for Co80M20 (M: Ir, Pt) thin film sputtered under high substrate temperature, the irregular or alternately layered structure of M rich and M poor layer can be observed directly. To evaluate Curie temperature (TC), which is an important physical property of thermally assisted media, conduction electron spin-dependent scattering should be the focus. Fitting dielectric spectra for MnSb thin film with TC ~ 320 ° C measured with the ellipsometry and analyzing the Drude's term, temperature dependence of resistivity and scattering time at around TC was confirmed.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TMAG.2013.2285286</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9464
ispartof IEEE transactions on magnetics, 2014-03, Vol.50 (3), p.102-106
issn 0018-9464
1941-0069
language eng
recordid cdi_ieee_primary_6775002
source IEEE Electronic Library (IEL)
subjects Atomic layer deposition
Atomic structure
Close packed lattices
Cross-disciplinary physics: materials science
rheology
Dielectric spectrum
Diffraction
Exact sciences and technology
grazing-incidence in-plane X-ray diffraction (XRD)
Hexagonal cells
Magnetic recording
Magnetism
Materials
Materials science
Media
Metals
Other topics in materials science
Physics
Scattering
Stacking
stacking faults
super-lattice diffraction
Temperature measurement
Thin films
title Evaluation of Atomic Layer Stacking Structure and Curie Temperature of Magnetic Films for Thermally Assisted Recording Media (Invited)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T13%3A40%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluation%20of%20Atomic%20Layer%20Stacking%20Structure%20and%20Curie%20Temperature%20of%20Magnetic%20Films%20for%20Thermally%20Assisted%20Recording%20Media%20(Invited)&rft.jtitle=IEEE%20transactions%20on%20magnetics&rft.au=Saito,%20Shin&rft.date=2014-03-01&rft.volume=50&rft.issue=3&rft.spage=102&rft.epage=106&rft.pages=102-106&rft.issn=0018-9464&rft.eissn=1941-0069&rft.coden=IEMGAQ&rft_id=info:doi/10.1109/TMAG.2013.2285286&rft_dat=%3Cproquest_RIE%3E1677941706%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1509179763&rft_id=info:pmid/&rft_ieee_id=6775002&rfr_iscdi=true