An explicit solution to constrained stabilization via polytopic tubes

This paper proposes a method to obtain stabilizing controllers for constrained linear systems with assigned sets of initial conditions. The controller synthesis method is based on invariant tubes and works for linear time-invariant systems and for linear systems with multiplicative uncertainties. Gi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Brunner, Florian D., Lazar, Mircea, Allgower, Frank
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7727
container_issue
container_start_page 7721
container_title
container_volume
creator Brunner, Florian D.
Lazar, Mircea
Allgower, Frank
description This paper proposes a method to obtain stabilizing controllers for constrained linear systems with assigned sets of initial conditions. The controller synthesis method is based on invariant tubes and works for linear time-invariant systems and for linear systems with multiplicative uncertainties. Given a compact initial condition set, a sequence of sets and an associated sequence of control laws is computed such that the initial condition set is contained in the first set of the sequence and every state in any set of the sequence is controlled to the next set in the sequence while satisfying state and input constraints. Assumptions on the parameterizations of the sets and the control laws are given that guarantee recursive feasibility of the tube synthesis problem and convergence of the closed-loop trajectories. For a particular type of parameterization it is shown that these assumptions are satisfied. Numerical simulations are presented that illustrate the developed synthesis method.
doi_str_mv 10.1109/CDC.2013.6761115
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6761115</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6761115</ieee_id><sourcerecordid>6761115</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-8bcd7a21e7a154f8b792528acfb3e507e4bce31b1baf418a2557ba3390ee22603</originalsourceid><addsrcrecordid>eNo1kEtLAzEURiMq2NbuBTf5AzPmJpPHLMtYH1Bwo-tyk96ByDgZmlSsv17Quvo4HDiLj7EbEDWAaO-6-66WAlRtrAEAfcaWrXXQGKu0BavO2fwfGnPBZgJaqKQEc8XmOb8LIZwwZsbWq5HT1zTEEAvPaTiUmEZeEg9pzGWPcaQdzwV9HOI3_srPiHxKw7GkKQZeDp7yNbvscci0PO2CvT2sX7unavPy-NytNlUEq0vlfNhZlEAWQTe987aVWjoMvVekhaXGB1LgwWPfgEOptfWoVCuIpDRCLdjtXzcS0Xbaxw_cH7enC9QPNLpOOw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>An explicit solution to constrained stabilization via polytopic tubes</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Brunner, Florian D. ; Lazar, Mircea ; Allgower, Frank</creator><creatorcontrib>Brunner, Florian D. ; Lazar, Mircea ; Allgower, Frank</creatorcontrib><description>This paper proposes a method to obtain stabilizing controllers for constrained linear systems with assigned sets of initial conditions. The controller synthesis method is based on invariant tubes and works for linear time-invariant systems and for linear systems with multiplicative uncertainties. Given a compact initial condition set, a sequence of sets and an associated sequence of control laws is computed such that the initial condition set is contained in the first set of the sequence and every state in any set of the sequence is controlled to the next set in the sequence while satisfying state and input constraints. Assumptions on the parameterizations of the sets and the control laws are given that guarantee recursive feasibility of the tube synthesis problem and convergence of the closed-loop trajectories. For a particular type of parameterization it is shown that these assumptions are satisfied. Numerical simulations are presented that illustrate the developed synthesis method.</description><identifier>ISSN: 0191-2216</identifier><identifier>ISBN: 1467357146</identifier><identifier>ISBN: 9781467357142</identifier><identifier>EISBN: 9781467357173</identifier><identifier>EISBN: 1479913812</identifier><identifier>EISBN: 1467357170</identifier><identifier>EISBN: 9781479913817</identifier><identifier>DOI: 10.1109/CDC.2013.6761115</identifier><language>eng</language><publisher>IEEE</publisher><subject>Cost function ; Electron tubes ; Lyapunov methods ; Robustness ; Trajectory</subject><ispartof>52nd IEEE Conference on Decision and Control, 2013, p.7721-7727</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6761115$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54899</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6761115$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Brunner, Florian D.</creatorcontrib><creatorcontrib>Lazar, Mircea</creatorcontrib><creatorcontrib>Allgower, Frank</creatorcontrib><title>An explicit solution to constrained stabilization via polytopic tubes</title><title>52nd IEEE Conference on Decision and Control</title><addtitle>CDC</addtitle><description>This paper proposes a method to obtain stabilizing controllers for constrained linear systems with assigned sets of initial conditions. The controller synthesis method is based on invariant tubes and works for linear time-invariant systems and for linear systems with multiplicative uncertainties. Given a compact initial condition set, a sequence of sets and an associated sequence of control laws is computed such that the initial condition set is contained in the first set of the sequence and every state in any set of the sequence is controlled to the next set in the sequence while satisfying state and input constraints. Assumptions on the parameterizations of the sets and the control laws are given that guarantee recursive feasibility of the tube synthesis problem and convergence of the closed-loop trajectories. For a particular type of parameterization it is shown that these assumptions are satisfied. Numerical simulations are presented that illustrate the developed synthesis method.</description><subject>Cost function</subject><subject>Electron tubes</subject><subject>Lyapunov methods</subject><subject>Robustness</subject><subject>Trajectory</subject><issn>0191-2216</issn><isbn>1467357146</isbn><isbn>9781467357142</isbn><isbn>9781467357173</isbn><isbn>1479913812</isbn><isbn>1467357170</isbn><isbn>9781479913817</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kEtLAzEURiMq2NbuBTf5AzPmJpPHLMtYH1Bwo-tyk96ByDgZmlSsv17Quvo4HDiLj7EbEDWAaO-6-66WAlRtrAEAfcaWrXXQGKu0BavO2fwfGnPBZgJaqKQEc8XmOb8LIZwwZsbWq5HT1zTEEAvPaTiUmEZeEg9pzGWPcaQdzwV9HOI3_srPiHxKw7GkKQZeDp7yNbvscci0PO2CvT2sX7unavPy-NytNlUEq0vlfNhZlEAWQTe987aVWjoMvVekhaXGB1LgwWPfgEOptfWoVCuIpDRCLdjtXzcS0Xbaxw_cH7enC9QPNLpOOw</recordid><startdate>201312</startdate><enddate>201312</enddate><creator>Brunner, Florian D.</creator><creator>Lazar, Mircea</creator><creator>Allgower, Frank</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201312</creationdate><title>An explicit solution to constrained stabilization via polytopic tubes</title><author>Brunner, Florian D. ; Lazar, Mircea ; Allgower, Frank</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-8bcd7a21e7a154f8b792528acfb3e507e4bce31b1baf418a2557ba3390ee22603</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Cost function</topic><topic>Electron tubes</topic><topic>Lyapunov methods</topic><topic>Robustness</topic><topic>Trajectory</topic><toplevel>online_resources</toplevel><creatorcontrib>Brunner, Florian D.</creatorcontrib><creatorcontrib>Lazar, Mircea</creatorcontrib><creatorcontrib>Allgower, Frank</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Brunner, Florian D.</au><au>Lazar, Mircea</au><au>Allgower, Frank</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>An explicit solution to constrained stabilization via polytopic tubes</atitle><btitle>52nd IEEE Conference on Decision and Control</btitle><stitle>CDC</stitle><date>2013-12</date><risdate>2013</risdate><spage>7721</spage><epage>7727</epage><pages>7721-7727</pages><issn>0191-2216</issn><isbn>1467357146</isbn><isbn>9781467357142</isbn><eisbn>9781467357173</eisbn><eisbn>1479913812</eisbn><eisbn>1467357170</eisbn><eisbn>9781479913817</eisbn><abstract>This paper proposes a method to obtain stabilizing controllers for constrained linear systems with assigned sets of initial conditions. The controller synthesis method is based on invariant tubes and works for linear time-invariant systems and for linear systems with multiplicative uncertainties. Given a compact initial condition set, a sequence of sets and an associated sequence of control laws is computed such that the initial condition set is contained in the first set of the sequence and every state in any set of the sequence is controlled to the next set in the sequence while satisfying state and input constraints. Assumptions on the parameterizations of the sets and the control laws are given that guarantee recursive feasibility of the tube synthesis problem and convergence of the closed-loop trajectories. For a particular type of parameterization it is shown that these assumptions are satisfied. Numerical simulations are presented that illustrate the developed synthesis method.</abstract><pub>IEEE</pub><doi>10.1109/CDC.2013.6761115</doi><tpages>7</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0191-2216
ispartof 52nd IEEE Conference on Decision and Control, 2013, p.7721-7727
issn 0191-2216
language eng
recordid cdi_ieee_primary_6761115
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Cost function
Electron tubes
Lyapunov methods
Robustness
Trajectory
title An explicit solution to constrained stabilization via polytopic tubes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T06%3A10%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=An%20explicit%20solution%20to%20constrained%20stabilization%20via%20polytopic%20tubes&rft.btitle=52nd%20IEEE%20Conference%20on%20Decision%20and%20Control&rft.au=Brunner,%20Florian%20D.&rft.date=2013-12&rft.spage=7721&rft.epage=7727&rft.pages=7721-7727&rft.issn=0191-2216&rft.isbn=1467357146&rft.isbn_list=9781467357142&rft_id=info:doi/10.1109/CDC.2013.6761115&rft_dat=%3Cieee_6IE%3E6761115%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467357173&rft.eisbn_list=1479913812&rft.eisbn_list=1467357170&rft.eisbn_list=9781479913817&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6761115&rfr_iscdi=true